14,659 research outputs found

    Empirical information on nuclear matter fourth-order symmetry energy from an extended nuclear mass formula

    Full text link
    We establish a relation between the equation of state (EOS) of nuclear matter and the fourth-order symmetry energy asym,4(A)a_{\rm{sym,4}}(A) of finite nuclei in a semi-empirical nuclear mass formula by self-consistently considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us to extract information on nuclear matter fourth-order symmetry energy Esym,4(ρ0)E_{\rm{sym,4}}(\rho_0) at normal nuclear density ρ0\rho_0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4(A)a_{\rm{sym,4}}(A) via the double difference of the "experimental" symmetry energy extracted from nuclear masses, for the first time, we estimate a value of Esym,4(ρ0)=20.0±4.6E_{\rm{sym,4}}(\rho_0) = 20.0\pm4.6 MeV. Such a value of Esym,4(ρ0)E_{\rm{sym,4}}(\rho_0) is significantly larger than the predictions from mean-field models and thus suggests the importance of considering the effects of beyond the mean-field approximation in nuclear matter calculations.Comment: 7 pages, 1 figure. Presentation improved and discussions added. Accepted version to appear in PL
    • …
    corecore