89,307 research outputs found

    Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity

    Get PDF
    Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. {\bf 107}, 181803 (2011)] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality (arXiv:1110.6673[hep-ph]). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this paper, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.Comment: 9 pages, no figure. Version for publication in PL

    Cosmological model with local symmetry of very special relativity and constraints on it from supernovae

    Full text link
    Based on Cohen \& Glashow's very special relativity [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. {\bf 97} (2006) 021601], we propose an anisotropic modification to the Friedmann-Robertson-Walker (FRW) line element. An arbitrarily oriented 1-form is introduced and the FRW spacetime becomes of the Randers-Finsler type. The 1-form picks out a privileged axis in the universe. Thus, the cosmological redshift as well as the Hubble diagram of the type Ia supernovae (SNe Ia) becomes anisotropic. By directly analyzing the Union2 compilation, we obtain the privileged axis pointing to (l,b)=(304∘±43∘,−27∘±13∘)(l,b)=({304^\circ}\pm{43^\circ},{-27^\circ}\pm{13^\circ}) (68% C.L.68\%~\rm{C.L.}). This privileged axis is close to those obtained by comparing the best-fit Hubble diagrams in pairs of hemispheres. It should be noticed that the result is consistent with isotropy at the 1σ1\sigma level since the anisotropic magnitude is D=0.03±0.03D=0.03\pm 0.03.Comment: 13 pages, 2 figures. Published at EPJC(2013

    Harnack inequalities and B\^ocher-type theorems for conformally invariant fully nonlinear degenerate elliptic equations

    Full text link
    We give a generalization of a theorem of B\^ocher for the Laplace equation to a class of conformally invariant fully nonlinear degenerate elliptic equations. We also prove a Harnack inequality for locally Lipschitz viscosity solutions and a classification of continuous radially symmetric viscosity solutions.Comment: to appear in CPA
    • …
    corecore