9,203 research outputs found

    Energy Dependence of Jet Quenching and Life-time of the Dense Matter in High-energy Heavy-ion Collisions

    Full text link
    Suppression of high pTp_T hadron spectra in high-energy heavy-ion collisions at different energies is studied within a pQCD parton model incorporating medium induced parton energy loss. The pTp_T dependence of the nuclear modification factor RAA(pT)R_{AA}(p_T) is found to depend on both the energy dependence of the parton energy loss and the power-law behavior of the initial jet spectra. The high pTp_T hadron suppression at s=62.4\sqrt{s}=62.4 GeV and its centrality dependence are studied in detail. The overall values of the modification factor are found to provide strong constraints on the lifetime of the dense matter.Comment: 6 pages in RevTex with 3 postscript figure

    A NLO analysis on fragility of dihadron tomography in high energy AAAA collisions

    Full text link
    The dihadron spectra in high energy AAAA collisions are studied within the NLO pQCD parton model with jet quenching taken into account. The high pTp_T dihadron spectra are found to be contributed not only by jet pairs close and tangential to the surface of the dense matter but also by punching-through jets survived at the center while the single hadron high pTp_T spectra are only dominated by surface emission. Consequently, the suppression factor of such high-pTp_T hadron pairs is found to be more sensitive to the initial gluon density than the single hadron suppression factor.Comment: 4 pages, 4 figures, proceedings for the 19th international Conference on ultra-relativistic nucleus-nucleus collisions (QM2006), Shanghai, China, November 14-20, 200

    High Pt hadron-hadron correlations

    Full text link
    We propose the formulation of a dihadron fragmentation function in terms of parton matrix elements. Under the collinear factorization approximation and facilitated by the cut-vertex technique, the two hadron inclusive cross section at leading order (LO) in e+ e- annihilation is shown to factorize into a short distance parton cross section and the long distance dihadron fragmentation function. We also derive the DGLAP evolution equation of this function at leading log. The evolution equation for the non-singlet and singlet quark fragmentation function and the gluon fragmentation function are solved numerically with the initial condition taken from event generators. Modifications to the dihadron fragmentation function from higher twist corrections in DIS off nuclei are computed. Results are presented for cases of physical interest.Comment: 7 pages, 8 figures, Latex, Proceedings of Hot Quarks 2004, July 18-24, Taos, New Mexic

    Hierarchical Neyman-Pearson Classification for Prioritizing Severe Disease Categories in COVID-19 Patient Data

    Full text link
    COVID-19 has a spectrum of disease severity, ranging from asymptomatic to requiring hospitalization. Understanding the mechanisms driving disease severity is crucial for developing effective treatments and reducing mortality rates. One way to gain such understanding is using a multi-class classification framework, in which patients' biological features are used to predict patients' severity classes. In this severity classification problem, it is beneficial to prioritize the identification of more severe classes and control the "under-classification" errors, in which patients are misclassified into less severe categories. The Neyman-Pearson (NP) classification paradigm has been developed to prioritize the designated type of error. However, current NP procedures are either for binary classification or do not provide high probability controls on the prioritized errors in multi-class classification. Here, we propose a hierarchical NP (H-NP) framework and an umbrella algorithm that generally adapts to popular classification methods and controls the under-classification errors with high probability. On an integrated collection of single-cell RNA-seq (scRNA-seq) datasets for 864 patients, we explore ways of featurization and demonstrate the efficacy of the H-NP algorithm in controlling the under-classification errors regardless of featurization. Beyond COVID-19 severity classification, the H-NP algorithm generally applies to multi-class classification problems, where classes have a priority order

    Modification of conductive polymer for polymeric anodes of flexible organic light-emitting diodes

    Get PDF
    Author name used in this publication: Guang-Feng WangAuthor name used in this publication: Xiao-Ming TaoAuthor name used in this publication: John H. Xin2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Adaptive conformal classification with noisy labels

    Full text link
    This paper develops novel conformal prediction methods for classification tasks that can automatically adapt to random label contamination in the calibration sample, enabling more informative prediction sets with stronger coverage guarantees compared to state-of-the-art approaches. This is made possible by a precise theoretical characterization of the effective coverage inflation (or deflation) suffered by standard conformal inferences in the presence of label contamination, which is then made actionable through new calibration algorithms. Our solution is flexible and can leverage different modeling assumptions about the label contamination process, while requiring no knowledge about the data distribution or the inner workings of the machine-learning classifier. The advantages of the proposed methods are demonstrated through extensive simulations and an application to object classification with the CIFAR-10H image data set.Comment: 35 pages (98 pages including references and appendices

    Where is the jet quenching in Pb+Pb collisions at 158 AGeV?

    Full text link
    Because of the rapidly falling particle spectrum at large pTp_T from jet fragmentation at the CERN SPS energy, the high-pTp_T hadron distribution should be highly sensitive to parton energy loss inside a dense medium as predicted by recent perturbative QCD (pQCD) studies. A careful analysis of recent data from CERN SPS experiments via pQCD calculation shows little evidence of energy loss. This implies that either the life-time of the dense partonic matter is very short or one has to re-think about the problem of parton energy loss in dense matter. The hadronic matter does not seem to cause jet quenching in Pb+PbPb+Pb collisions at the CERN SPS. High-pTp_T two particle correlation in the azimuthal angle is proposed to further clarify this issue.Comment: 4 pages with 2 ps figures. Minors changes are made in the text with updated references. Revised version to appear in Phys. Rev. Letter
    corecore