1,130 research outputs found

    Geometric effects of a quarter of corrugated torus

    Full text link
    In the spirit of the thin-layer quantization scheme, we give the effective Shr\"{o}dinger equation for a particle confined to a corrugated torus, in which the geometric potential is substantially changed by corrugation. We find the attractive wells reconstructed by the corrugation not being at identical depths, which is strikingly different from that of a corrugated nanotube, especially in the inner side of the torus. By numerically calculating the transmission probability, we find that the resonant tunneling peaks and the transmission gaps are merged and broadened by the corrugation of the inner side of torus. These results show that the quarter corrugated torus can be used not only to connect two tubes with different radiuses in different directions, but also to filter the particles with particular incident~energies.Comment: 7 pages, 8 figure

    Finite-time control for uncertain systems and application to flight control

    Get PDF
    In this paper, the finite-time control design problem for a class of nonlinear systems with matched and mismatched uncertainty is addressed. The finite-time control scheme is designed by integrating multi power reaching (MPR) law and finite-time disturbance observer (FTDO) into integral sliding mode control, where a novel sliding surface is designed, and the FTDO is applied to estimate the uncertainty. Then the fixed-time reachability of the MPR law is analyzed, and the finite-time stability of the closed-loop system is proven in the framework of Lyapunov stability theory. Finally, numerical simulation and the application to the flight control of hypersonic vehicle (HSV) are provided to show the effectiveness of the designed controller
    • …
    corecore