5,270 research outputs found

    Heterogeneity in structurally arrested hard spheres

    Get PDF
    When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate. We find that while the degree of order, as measured by both bond-orientation and translation order parameters, increases monotonically with decreasing compression rate, the density of the arrested state first increases, then decreases, then increases again, as the compression rate decreases, showing a minimum at an intermediate compression rate. Examination of the distribution of the local order parameters and the distribution of the root-mean-square fluctuation of the particle positions, as well as direct visual inspection of the arrested structures, reveal that they are structurally heterogeneous, consisting of disordered, amorphous regions and locally ordered crystal-like domains. In particular, the low-density arrested states correspond with many interconnected small crystal clusters that form a polycrystalline network interspersed in an amorphous background, suggesting that jamming by the domains may be an important mechanism for these states

    Jet-cloud/star interaction as an interpretation of neutrino outburst from the blazar TXS 0506+056

    Full text link
    Recently, a high-energy neutrino event IceCube-170922A in the spatial and temporal coincidence with the flaring gamma-ray blazar TXS 0506+056 was reported. A neutrino outburst between September 2014 and March 2015 was discovered in the same direction by a further investigation of 9.59.5 years of IceCube data, while the blazar is in a quiescent state during the outburst with a gamma-ray flux only about one-fifth of the neutrino flux. In this letter, we propose the neutrino outburst originates from the interaction between a relativistic jet and a dense gas cloud which may be formed via the tidally disrupted envelope of a red giant being blown by the impact of the jet. Gamma-ray photons and electron/positron pairs that are produced correspondingly will induce electromagnetic cascades. Comptonization of the cascade emission inside the cloud forms an X-ray photon field with Wien distribution. GeV flux is suppressed due to the absorption by the Comptonized photon field and, as a result, a hard spectrum above 10 GeV is formed. The gamma-ray spectrum predicted in our model is consistent with the Fermi-LAT data of TXS 0506+056.Comment: 6 pages, 3 figure
    • …
    corecore