27 research outputs found

    Family, Community, and a Life of Politics

    Get PDF
    A first-person narrative about life in Dayton, Ohio, composed as part of the Facing Project, a nationwide storytelling initiative

    MLVSNet: Multi-level Voting Siamese Network for 3D visual tracking

    Get PDF
    Benefiting from the excellent performance of Siamese-based trackers, huge progress on 2D visual tracking has been achieved. However, 3D visual tracking is still under-explored. Inspired by the idea of Hough voting in 3D object detection, in this paper, we propose a Multi-level Voting Siamese Network (MLVSNet) for 3D visual tracking from outdoor point cloud sequences. To deal with sparsity in outdoor 3D point clouds, we propose to perform Hough voting on multi-level features to get more vote centers and retain more useful information, instead of voting only on the fi-nal level feature as in previous methods. We also design an efficient and lightweight Target-Guided Attention (TGA) module to transfer the target information and highlight the target points in the search area. Moreover, we propose a Vote-cluster Feature Enhancement (VFE) module to exploit the relationships between different vote clusters. Extensive experiments on the 3D tracking benchmark of KITTI dataset demonstrate that our MLVSNet outperforms state-of-the-art methods with significant margins. Code will be available at https://github.com/CodeWZT/MLVSNet

    Open-source Software Reliability Modeling with Stochastic Impulsive Differential Equations

    No full text
    In reality, sudden updates of software, attacks of hackers, influence of the Internet market, etc. can cause a surge in the number of open-source software (OSS) faults (this moment is the time when impulse occurs), which results in impulsive phenomenon. For the existing software reliability models, dynamic process of software fault is considered to be continuous when assessing reliability, but continuity of the process can be disrupted with appearance of random impulses. Thus, to more accurately assess software reliability, we proposed an OSS reliability model with SIDE. In the model, dynamic process of software fault is divided into a continuous and a skipped part, described the continuous part of the process with SDE, and described destruction of the continuity caused by unpredictable random events with random impulses. Finally, the proposed model is verified with two datasets from real OSS project, and the results show that the proposed model is more in line with reality and has better fitting effect than the existing models

    Mapping of QTLs and Screening Candidate Genes Associated with the Ability of Sugarcane Tillering and Ratooning

    No full text
    The processes of sugarcane tillering and ratooning, which directly affect the yield of plant cane and ratoon, are of vital importance to the population establishment and the effective stalk number per unit area. In the present study, the phenotypic data of 285 F1 progenies from a cross of sugarcane varieties YT93-159 × ROC22 were collected in eight environments, which consisted of plant cane and ratoon cultivated in three different ecological sites. The broad sense heritability (H2) of the tillering and the ratoon sprouting was 0.64 and 0.63, respectively, indicating that they were middle to middle-high heritable traits, and there is a significantly positive correlation between the two traits. Furthermore, a total of 26 quantitative trait loci (QTLs) related to the tillering ability and 11 QTLs associated with the ratooning ability were mapped on two high-quality genetic maps derived from a 100K SNP chip, and their phenotypic variance explained (PVE) ranged from 4.27–25.70% and 6.20–13.54%, respectively. Among them, four consistent QTLs of qPCTR-R9, qPCTR-Y28, qPCTR-Y60/qRSR-Y60 and PCTR-Y8-1/qRSR-Y8 were mapped in two environments, of which, qPCTR-Y8-1/qRSR-Y8 had the PVEs of 11.90% in the plant cane and 7.88% in the ratoon. Furthermore, a total of 25 candidate genes were identified in the interval of the above four consistent QTLs and four major QTLs of qPCTR-Y8-1, qPCTR-Y8-2, qRSR-R51 and qRSR-Y43-2, with the PVEs from 11.73–25.70%. All these genes were associated with tillering, including eight transcription factors (TFs), while 15 of them were associated with ratooning, of which there were five TFs. These QTLs and genes can provide a scientific reference for genetic improvement of tillering and ratooning traits in sugarcane

    Vote-based 3D object detection with context modeling and SOB-3DNMS

    Get PDF
    Most existing 3D object detection methods recognize objects individually, without giving any consideration on contextual information between these objects. However, objects in indoor scenes are usually related to each other and the scene, forming the contextual information. Based on this observation, we propose a novel 3D object detection network, which is built on the state-of-the-art VoteNet but takes into consideration of the contextual information at multiple levels for detection and recognition of 3D objects. To encode relationships between elements at different levels, we introduce three contextual sub-modules, capturing contextual information at patch, object, and scene levels respectively, and build them into the voting and classification stages of VoteNet. In addition, at the post-processing stage, we also consider the spatial diversity of detected objects and propose an improved 3D NMS (non-maximum suppression) method, namely Survival-Of-the-Best 3DNMS (SOB-3DNMS), to reduce false detections. Experiments demonstrate that our method is an effective way to promote detection accuracy, and has achieved new state-of-the-art detection performance on challenging 3D object detection datasets, i.e., SUN RGBD and ScanNet, when only taking point cloud data as input

    Genome-Wide Characterization of NLRs in <i>Saccharum spontaneum</i> L. and Their Responses to Leaf Blight in <i>Saccharum</i>

    No full text
    Sugarcane is an important sugar and potential energy crop, and the complexity of its genome has led to stagnant progress in genome decipherment and hindered the genome-wide analysis of the nucleotide binding site leucine-rich repeat (NLR) receptor until the genome of Saccharum spontaneum was published. From the genome of S. spontaneum, 724 allelic and non-allelic NLRs were identified and classified into five types (N, NL, CN, CNL, and P) according to domain architectures and integrity and at least 35 genes encoded non-canonical domains. The phylogenetic analysis indicated NLRs containing the coiled-coil (CC) domain separated from those without CC in six Poaceae species, including S. spontaneum. The motif analysis determined the characteristics and potential functions of the 137 representative non-allelic NLRs, especially the core motifs contained in the NBS and LRR domains, which indicated that motifs were regularly distributed among clades. Through transcription factor binding site (TFBS) profiles, we predicted that the most important transcription regulator of NLRs in sugarcane were ERF, MIKC_MADS, and C2H2. In addition, based on three sets of transcriptome data from two sugarcane hybrids and one S. spontaneum clone infected by the necrotrophic fungal pathogen Stagonospora tainanensis causing sugarcane leaf blight (SLB), the expression dynamics of NLRs responding to the infection in three sugarcane clones were compared. The different genetic background led to the significant difference of NLRs response to SLB in different sugarcane clones, and we got an inference of the potential mechanism of SLB resistance. These results provided a basic reference and new insights to further study and utilize the NLRs

    Genome-Wide Characterization of Lectin Receptor Kinases in <i>Saccharum spontaneum</i> L. and Their Responses to <i>Stagonospora tainanensis</i> Infection

    No full text
    Sugarcane is an important sugar and bioenergy ethanol crop, and the hyperploidy has led to stagnant progress in sugarcane genome decipherment, which also hindered the genome-wide analyses of versatile lectin receptor kinases (LecRKs). The published genome of Saccharum spontaneum, one of the two sugarcane ancestor species, enables us to study the characterization of LecRKs and their responses to sugarcane leaf blight (SLB) triggered by Stagonospora tainanensis. A total of 429 allelic and non-allelic LecRKs, which were classified into evolved independently three types according to signal domains and phylogeny, were identified based on the genome. Regarding those closely related LecRKs in the phylogenetic tree, their motifs and exon architectures of representative L- and G-types were similar or identical. LecRKs showed an unequal distribution on chromosomes and more G-type tandem repeats may come from the gene expansion. Comparing the differentially expressed LecRKs (DELs) in response to SLB in sugarcane hybrid and ancestor species S. spontaneum, we found that the DEL number in the shared gene sets was highly variable among each sugarcane accession, which indicated that the expression dynamics of LecRKs in response to SLB were quite different between hybrids and particularly between sugarcane hybrid and S. spontaneum. In addition, C-type LecRKs may participate in metabolic processes of plant–pathogen interaction, mainly including pathogenicity and plant resistance, indicating their putative roles in sugarcane responses to SLB infection. The present study provides a basic reference and global insight into the further study and utilization of LecRKs in plants

    Genome-Wide Characterization of Lectin Receptor Kinases in Saccharum spontaneum L. and Their Responses to Stagonospora tainanensis Infection

    No full text
    Sugarcane is an important sugar and bioenergy ethanol crop, and the hyperploidy has led to stagnant progress in sugarcane genome decipherment, which also hindered the genome-wide analyses of versatile lectin receptor kinases (LecRKs). The published genome of Saccharum spontaneum, one of the two sugarcane ancestor species, enables us to study the characterization of LecRKs and their responses to sugarcane leaf blight (SLB) triggered by Stagonospora tainanensis. A total of 429 allelic and non-allelic LecRKs, which were classified into evolved independently three types according to signal domains and phylogeny, were identified based on the genome. Regarding those closely related LecRKs in the phylogenetic tree, their motifs and exon architectures of representative L- and G-types were similar or identical. LecRKs showed an unequal distribution on chromosomes and more G-type tandem repeats may come from the gene expansion. Comparing the differentially expressed LecRKs (DELs) in response to SLB in sugarcane hybrid and ancestor species S. spontaneum, we found that the DEL number in the shared gene sets was highly variable among each sugarcane accession, which indicated that the expression dynamics of LecRKs in response to SLB were quite different between hybrids and particularly between sugarcane hybrid and S. spontaneum. In addition, C-type LecRKs may participate in metabolic processes of plant–pathogen interaction, mainly including pathogenicity and plant resistance, indicating their putative roles in sugarcane responses to SLB infection. The present study provides a basic reference and global insight into the further study and utilization of LecRKs in plants
    corecore