271 research outputs found

    Super-FEC Codes for 40/100 Gbps Networking

    Full text link
    This paper presents a simple approach to evaluate the performance bound at very low bit-error-rate (BER) range for binary pseudo-product codes and true-product codes. Moreover it introduces a super-product BCH code that can achieve near-Shannon limit performance with very low decoding complexity. This work has been accepted by IEEE Communications Letters for future publication. Copyright may be transferred without notice, after which this version may no longer be accessible.Comment: This work has been accepted by IEEE Communications Letters for future publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Offloading Optimization for Low-Latency Secure Mobile Edge Computing Systems

    Get PDF
    This paper proposes a low-latency secure mobile edge computing (MEC) system where multiple users offload computing tasks to a base station in the presence of an eavesdropper. We jointly optimize the users’ transmit power, computing capacity allocation, and user association to minimize the computing and transmission latencies over all users subject to security and computing resource constraints. Numerical results show that our proposed algorithm outperforms baseline strategies. Furthermore, we highlight a novel trade-off between the latency and security of MEC systems

    A Computationally Efficient Neural Video Compression Accelerator Based on a Sparse CNN-Transformer Hybrid Network

    Full text link
    Video compression is widely used in digital television, surveillance systems, and virtual reality. Real-time video decoding is crucial in practical scenarios. Recently, neural video compression (NVC) combines traditional coding with deep learning, achieving impressive compression efficiency. Nevertheless, the NVC models involve high computational costs and complex memory access patterns, challenging real-time hardware implementations. To relieve this burden, we propose an algorithm and hardware co-design framework named NVCA for video decoding on resource-limited devices. Firstly, a CNN-Transformer hybrid network is developed to improve compression performance by capturing multi-scale non-local features. In addition, we propose a fast algorithm-based sparse strategy that leverages the dual advantages of pruning and fast algorithms, sufficiently reducing computational complexity while maintaining video compression efficiency. Secondly, a reconfigurable sparse computing core is designed to flexibly support sparse convolutions and deconvolutions based on the fast algorithm-based sparse strategy. Furthermore, a novel heterogeneous layer chaining dataflow is incorporated to reduce off-chip memory traffic stemming from extensive inter-frame motion and residual information. Thirdly, the overall architecture of NVCA is designed and synthesized in TSMC 28nm CMOS technology. Extensive experiments demonstrate that our design provides superior coding quality and up to 22.7x decoding speed improvements over other video compression designs. Meanwhile, our design achieves up to 2.2x improvements in energy efficiency compared to prior accelerators.Comment: Accepted by DATE 202

    Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and Dataflow Co-Design

    Full text link
    Sparse training is one of the promising techniques to reduce the computational cost of DNNs while retaining high accuracy. In particular, N:M fine-grained structured sparsity, where only N out of consecutive M elements can be nonzero, has attracted attention due to its hardware-friendly pattern and capability of achieving a high sparse ratio. However, the potential to accelerate N:M sparse DNN training has not been fully exploited, and there is a lack of efficient hardware supporting N:M sparse training. To tackle these challenges, this paper presents a computation-efficient training scheme for N:M sparse DNNs using algorithm, architecture, and dataflow co-design. At the algorithm level, a bidirectional weight pruning method, dubbed BDWP, is proposed to leverage the N:M sparsity of weights during both forward and backward passes of DNN training, which can significantly reduce the computational cost while maintaining model accuracy. At the architecture level, a sparse accelerator for DNN training, namely SAT, is developed to neatly support both the regular dense operations and the computation-efficient N:M sparse operations. At the dataflow level, multiple optimization methods ranging from interleave mapping, pre-generation of N:M sparse weights, and offline scheduling, are proposed to boost the computational efficiency of SAT. Finally, the effectiveness of our training scheme is evaluated on a Xilinx VCU1525 FPGA card using various DNN models and datasets. Experimental results show the SAT accelerator with the BDWP sparse training method under 2:8 sparse ratio achieves an average speedup of 1.75x over that with the dense training, accompanied by a negligible accuracy loss of 0.56% on average. Furthermore, our proposed training scheme significantly improves the training throughput by 2.97~25.22x and the energy efficiency by 1.36~3.58x over prior FPGA-based accelerators.Comment: To appear in the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD

    An Efficient FPGA-based Accelerator for Deep Forest

    Full text link
    Deep Forest is a prominent machine learning algorithm known for its high accuracy in forecasting. Compared with deep neural networks, Deep Forest has almost no multiplication operations and has better performance on small datasets. However, due to the deep structure and large forest quantity, it suffers from large amounts of calculation and memory consumption. In this paper, an efficient hardware accelerator is proposed for deep forest models, which is also the first work to implement Deep Forest on FPGA. Firstly, a delicate node computing unit (NCU) is designed to improve inference speed. Secondly, based on NCU, an efficient architecture and an adaptive dataflow are proposed, in order to alleviate the problem of node computing imbalance in the classification process. Moreover, an optimized storage scheme in this design also improves hardware utilization and power efficiency. The proposed design is implemented on an FPGA board, Intel Stratix V, and it is evaluated by two typical datasets, ADULT and Face Mask Detection. The experimental results show that the proposed design can achieve around 40x speedup compared to that on a 40 cores high performance x86 CPU.Comment: 5 pages, 5 figures, conferenc

    S2R: Exploring a Double-Win Transformer-Based Framework for Ideal and Blind Super-Resolution

    Full text link
    Nowadays, deep learning based methods have demonstrated impressive performance on ideal super-resolution (SR) datasets, but most of these methods incur dramatically performance drops when directly applied in real-world SR reconstruction tasks with unpredictable blur kernels. To tackle this issue, blind SR methods are proposed to improve the visual results on random blur kernels, which causes unsatisfactory reconstruction effects on ideal low-resolution images similarly. In this paper, we propose a double-win framework for ideal and blind SR task, named S2R, including a light-weight transformer-based SR model (S2R transformer) and a novel coarse-to-fine training strategy, which can achieve excellent visual results on both ideal and random fuzzy conditions. On algorithm level, S2R transformer smartly combines some efficient and light-weight blocks to enhance the representation ability of extracted features with relatively low number of parameters. For training strategy, a coarse-level learning process is firstly performed to improve the generalization of the network with the help of a large-scale external dataset, and then, a fast fine-tune process is developed to transfer the pre-trained model to real-world SR tasks by mining the internal features of the image. Experimental results show that the proposed S2R outperforms other single-image SR models in ideal SR condition with only 578K parameters. Meanwhile, it can achieve better visual results than regular blind SR models in blind fuzzy conditions with only 10 gradient updates, which improve convergence speed by 300 times, significantly accelerating the transfer-learning process in real-world situations
    • …
    corecore