18 research outputs found

    Wettability Alteration of Sandstone by Chemical Treatments

    Get PDF
    Liquid condensation in the reservoir near a wellbore may kill gas production in gas-condensate reservoirs when pressure drops lower than the dew point. It is clear from investigations reported in the literature that gas production could be improved by altering the rock wettability from liquid-wetness to gas-wetness. In this paper, three different fluorosurfactants FG1105, FC911, and FG40 were evaluated for altering the wettability of sandstone rocks from liquid-wetting to gas-wetting using contact angle measurement. The results showed that FG40 provided the best wettability alteration effect with a concentration of 0.3% and FC911 at the concentration of 0.3%

    Synthesis and Characterization of an Novel Intercalated Polyacrylamide/Clay Nanocomposite

    Full text link
    Solving the problem of the low temperature and low salt resistances of conventional polyacrylamide and the high cost of functional monomers, and thus, introducing it to the interlayer space provided by a layered structure for polymer modification, is a promising option. In this study, montmorillonite was used as the inorganic clay mineral, and an intercalated polyacrylamide/clay nanocomposite was synthesized via in situ intercalation polymerization. The optimal synthesis conditions were a clay content of 10.7%, preparation temperature of 11 °C, initiator concentration of 2.5 × 10−4 mol/L, and chain extender concentration of 5%. The IR results showed that the polymer was successfully introduced to the nanocomposite. The synthesized intercalated polyacrylamide/clay nanocomposite exhibited a better thickening effect, good viscoelasticity, and better salt resistance and thermal stability than polyacrylamide. In addition, the thickening capacity and thermal stability were superior to the salt-resistant polymer, with a 16.0% higher thickening viscosity and a 15.1% higher viscosity retention rate at 85 °C for 60 d. The intercalated polyacrylamide/clay nanocomposite further expanded the application of polyacrylamide in petroleum exploitation

    Formation damage evaluation of a sandstone reservoir via pore-scale X-ray computed tomography analysis

    Full text link
    The incompatibility between workover fluid and reservoir rock is one of the causes of formation damage. Fines migration and clay swelling are considered as the major mechanisms responsible for formation damage, which results in declining productivity. However, there has been limited visualized evidence of pore structural changes during formation damage. This paper establishes a formation damage evaluation method for sandstone reservoirs based on X-ray micro-computed tomography (CT) analysis. We presented conclusive evidence for clay swelling and fines migration during workover fluid flooding and formation liquid flooding. Water sensitivity and flow rate sensitivity tests were performed on a Dongying sandstone (heterogeneous argillaceous sandstone) plug. In addition, the plug was micro-CT imaged before and after flooding with workover fluid and formation liquid at medium resolution (24 μm voxel size); the changes in core permeability and the associated changes in 2D and 3D pore space were analyzed. We found that the sandstone pore space was partially blocked by clay minerals and moving particles, leading to significantly decreased porosity (5.17%–4.19% for sample 1, 5.38%–2.76% for sample 2) and permeability (3.38 × 10−3 μm2 to 1.28 × 10−3 μm2 for sample 1, 13.30 × 10−3 μm2 to 3.15 × 10−3 μm2 for sample 2). This permeability decrease was caused by a decrease in the average pore radius and coordination number. Moreover, increased micro-CT intensity was measured by comparison of initial and final tomogram images, representing clay swelling & blockage of pores during the displacement and a generally lower porosity. This work visualized microscale formation damage, which reminds that incompatibility between workover fluid and reservoir rock damages formation seriously and the fluid injection rate should be lower than the critical flow rate when developing a reservoir with a strong water sensitivity and flow rate sensitivity

    Synthesis and Characterization of an Novel Intercalated Polyacrylamide/Clay Nanocomposite

    Full text link
    Solving the problem of the low temperature and low salt resistances of conventional polyacrylamide and the high cost of functional monomers, and thus, introducing it to the interlayer space provided by a layered structure for polymer modification, is a promising option. In this study, montmorillonite was used as the inorganic clay mineral, and an intercalated polyacrylamide/clay nanocomposite was synthesized via in situ intercalation polymerization. The optimal synthesis conditions were a clay content of 10.7%, preparation temperature of 11 °C, initiator concentration of 2.5 × 10−4 mol/L, and chain extender concentration of 5%. The IR results showed that the polymer was successfully introduced to the nanocomposite. The synthesized intercalated polyacrylamide/clay nanocomposite exhibited a better thickening effect, good viscoelasticity, and better salt resistance and thermal stability than polyacrylamide. In addition, the thickening capacity and thermal stability were superior to the salt-resistant polymer, with a 16.0% higher thickening viscosity and a 15.1% higher viscosity retention rate at 85 °C for 60 d. The intercalated polyacrylamide/clay nanocomposite further expanded the application of polyacrylamide in petroleum exploitation

    Design and application of coal gangue sorting system based on deep learning

    Full text link
    Abstract With the advancement of science and technology, coal-washing plants are transitioning to intelligent, information-based, and professional sorting systems. This shift accelerates the construction a modern economic system characterized by green and low-carbon development, thereby promoting the high-quality advancement of the coal industry. Traditional manual gangue picking and multi-axis robotic arm gangue selection currently suffer from low recognition accuracy, slow sorting efficiency, and high worker labor intensity. This paper proposes a deep learning-based, non-contact gangue recognition and pneumatic intelligent sorting system. The system constructs a dynamic database containing key feature information such as the target gangue's contour, quality, and center of mass. The system elucidates the relationships between ejection speed, mass, volume, angle of incidence, and the impact energy matching mechanism. Demonstration experiments using the system prototype for coal gangue sorting reveal that, compared to existing robotic arm sorting methods in coal washing plants, this system achieves a gangue identification accuracy exceeding 97%, a sorting rate above 91%, and a separation time of less than 3 s from identification to separation, thereby effectively enhancing raw coal purity

    Precipitation behavior in G-phase strengthened ferritic stainless steels

    Full text link
    A series of G-phase strengthened ferritic stainless steels Fe-20Cr-3Ni-3Si-X (X = 2Mn, 1Mn-2Ti, 1Mn-2Nb and 1Mn-2Ta) are characterized after aging using experimental (microhardness, TEM and APT) and theoretical (DFT) techniques. The results indicate that the Ni16Mn6Si7 G-phase shows sluggish precipitation during aging treatment. This was attributed to the small difference in the enthalpy of formation between the Ni16Mn6Si7 G- and BCC phase and the requirement of high Ni:Fe ratio. A superfine Ni16Ti6Si7 G-phase was found to precipitate as a core accompanied with an “envelope” of Fe2TiSi-L21 Heusler phase during early aging (≤24 h) in the Ti containing alloy. This morphology is predicted to occur due to early Ni clustering in ferrite and a negative Ni concentration gradient away from the cluster that favors Fe2TiSi formation. The G-phases show only particle coarsening without obvious chemical composition evolution for further aging up to 96 h. A prominent hardness increase of 100-275 HV was also observed during aging. These findings provide valuable insight into methods for precipitating low lattice mismatch silicide phases for the development of future high strength steels

    Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture

    Full text link
    Abstract Simultaneous improvement of strength and conductivity is urgently demanded but challenging for bimetallic materials. Here we show by creating a self-assembled lamellar (SAL) architecture in W-Cu system, enhancement in strength and electrical conductivity is able to be achieved at the same time. The SAL architecture features alternately stacked Cu layers and W lamellae containing high-density dislocations. This unique layout not only enables predominant stress partitioning in the W phase, but also promotes hetero-deformation induced strengthening. In addition, the SAL architecture possesses strong crack-buffering effect and damage tolerance. Meanwhile, it provides continuous conducting channels for electrons and reduces interface scattering. As a result, a yield strength that doubles the value of the counterpart, an increased electrical conductivity, and a large plasticity were achieved simultaneously in the SAL W-Cu composite. This study proposes a flexible strategy of architecture design and an effective method for manufacturing bimetallic composites with excellent integrated properties
    corecore