167,199 research outputs found
Vision-based hand gesture interaction using particle filter, principle component analysis and transition network
Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test
Robust filtering for uncertain linear systems with delayed states and outputs
Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Deals with the robust filtering problem for uncertain linear systems with delayed states and outputs. Both time-invariant and time-varying cases are considered. For the time-invariant case, an algebraic Riccati matrix inequality approach is proposed to design a robust H∞ filter such that the filtering process remains asymptotically stable for all admissible uncertainties, and the transfer function from the disturbance inputs to error state outputs satisfies the prespecified H∞ norm upper bound constraint. We establish the conditions under which the desired robust H ∞ filters exist, and derive the explicit expression of these filters. For the time-varying case, we develop a differential Riccati inequality method to design the robust filters. A numerical example is provided to demonstrate the validity of the proposed design approac
Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises
Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a robust finite-horizon Kalman filter is designed for discrete time-varying uncertain systems with both additive and multiplicative noises. The system under consideration is subject to both deterministic and stochastic uncertainties. Sufficient conditions for the filter to guarantee an optimized upper bound on the state estimation error variance for admissible uncertainties are established in terms of two discrete Riccati difference equations. A numerical example is given to show the applicability of the presented method
Tunable one-dimensional microwave emissions from cyclic-transition three-level atoms
By strongly driving a cyclic-transition three-level artificial atom,
demonstrated by such as a flux-based superconducting circuit, we show that
coherent microwave signals can be excited along a coupled one-dimensional
transmission line. Typically, the intensity of the generated microwave is
tunable via properly adjusting the Rabi frequencies of the applied
strong-driving fields or introducing a probe field with the same frequency. In
practice, the system proposed here could work as an on-chip quantum device with
controllable atom-photon interaction to implement a total-reflecting mirror or
switch for the propagating probe field.Comment: 4 pages, 5 figure
Microstructural characterisation and thermal stability of an Mg-Al-Sr alloy prepared by rheo-diecasting
A commercial Mg-6Al-2Sr (AJ62) alloy has been prepared by a semisolid rheo-diecasting (RDC) process. The microstructure of the RDC alloy exhibits typical semisolid solidification features, i.e., 8.4 vol% primary α-Mg globules (23 μm in diameter), formed in the slurry maker at the primary solidification stage, uniformly distributed in the matrix of fine α-Mg grain size (8.2 μm) and intergranular eutectic Al4Sr lamellae, which resulted from secondary solidification inside the die. A ternary Mg-Al-Sr phase was also observed. Heat treatment revealed the extreme thermal stability of the RDC AJ62 alloy. The hardness showed little change up to 12 hours at 450°C, whilst the Al4Sr eutectic lamellae were broken up, spheroidised and coarsened during the annealing. The RDC alloy offers superior mechanical properties, especially ductility, over the same alloy produced by high pressure die-casting
- …