108 research outputs found

    Possible atomic structures for the sub-bandgap absorption of chalcogen hyperdoped silicon

    Full text link
    Single-crystal silicon wafers were hyperdoped respectively by sulfur, selenium, and tellurium element using ion implantation and nanosecond laser melting. The hyperdoping of such chalcogen elements endowed the treated silicon with a strong and wide sub-bandgap light absorptance. When these hyperdoped silicons were thermally annealed even at low temperatures (such as 200~400 oC), however, this extra sub-bandgap absorptance began to attenuate. In order to explain this attenuation of absorptance, alternatively, we consider it corresponding to a chemical decomposition reaction from optically absorbing structure to non-absorbing structure, and obtain a very good fitting to the attenuated absorptances by using Arrhenius equation. Further, we extract the reaction activation energies from the fittings and they are 0.343(+/- 0.031) eV for S-, 0.426(+/-0.042) eV for Se-, and 0.317(+/-0.033) eV for Te-hyperdoped silicon, respectively. We discuss these activation energies in term of the bond energies of chalcogen-Si metastable bonds, and finally suggest that several high-energy interstitial sites instead of the substitutional site, are very possibly the atomic structures that are responsible for the sub-bandgap absorptance of chalcogen hyperdoped silicon.Comment: 18 pages, 3 figures, 1 tabl

    Bioengineered human tissue regeneration and repair using endogenous stem cells

    Get PDF
    We describe a general approach to produce bone and cartilaginous structures utilizing the self-regenerative capacity of the intercostal rib space to treat a deformed metacarpophalangeal joint and microtia. Anatomically precise 3D molds were positioned on the perichondro-periosteal or perichondral flap of the intercostal rib without any other exogenous elements. We find anatomically precise metacarpal head and auricle constructs within the implanted molds after 6 months. The regenerated metacarpal head was used successfully to surgically repair the deformed metacarpophalangeal joint. Auricle reconstructive surgery in five unilateral microtia patients yielded good aesthetic and functional results. Long-term follow-up revealed the auricle constructs were safe and stable. Single-cell RNA sequencing analysis reveal early infiltration of a cell population consistent with mesenchymal stem cells, followed by IL-8-stimulated differentiation into chondrocytes. Our results demonstrate the repair and regeneration of tissues using only endogenous factors and a viable treatment strategy for bone and tissue structural defects.</p

    KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Full text link
    Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK‐8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3‐kinase (PI3K) or extracellular signal‐regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin‐ or CCK‐8‐evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113677/1/tjp6781.pd

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • 

    corecore