79,811 research outputs found

    Dynamic Assortment Optimization with Changing Contextual Information

    Full text link
    In this paper, we study the dynamic assortment optimization problem under a finite selling season of length TT. At each time period, the seller offers an arriving customer an assortment of substitutable products under a cardinality constraint, and the customer makes the purchase among offered products according to a discrete choice model. Most existing work associates each product with a real-valued fixed mean utility and assumes a multinomial logit choice (MNL) model. In many practical applications, feature/contexutal information of products is readily available. In this paper, we incorporate the feature information by assuming a linear relationship between the mean utility and the feature. In addition, we allow the feature information of products to change over time so that the underlying choice model can also be non-stationary. To solve the dynamic assortment optimization under this changing contextual MNL model, we need to simultaneously learn the underlying unknown coefficient and makes the decision on the assortment. To this end, we develop an upper confidence bound (UCB) based policy and establish the regret bound on the order of O~(dT)\widetilde O(d\sqrt{T}), where dd is the dimension of the feature and O~\widetilde O suppresses logarithmic dependence. We further established the lower bound Ω(dT/K)\Omega(d\sqrt{T}/K) where KK is the cardinality constraint of an offered assortment, which is usually small. When KK is a constant, our policy is optimal up to logarithmic factors. In the exploitation phase of the UCB algorithm, we need to solve a combinatorial optimization for assortment optimization based on the learned information. We further develop an approximation algorithm and an efficient greedy heuristic. The effectiveness of the proposed policy is further demonstrated by our numerical studies.Comment: 4 pages, 4 figures. Minor revision and polishing of presentatio

    A simple formula for local burnup based on constant relative reaction rate per nuclei

    Get PDF
    A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235^{235}U, 238^{238}U, and 239^{239}Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC) calculation. Then the present formula independently gives very similar results as the MC calculation from the starting to high burnup level, but takes just a few minutes. The relative reaction rates are found to be almost independent on the radius (except (n,γ)(n,\gamma) of 238^{238}U) and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance on the accuracy and the cost on time

    A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising

    Full text link
    There are two major ways of selling impressions in display advertising. They are either sold in spot through auction mechanisms or in advance via guaranteed contracts. The former has achieved a significant automation via real-time bidding (RTB); however, the latter is still mainly done over the counter through direct sales. This paper proposes a mathematical model that allocates and prices the future impressions between real-time auctions and guaranteed contracts. Under conventional economic assumptions, our model shows that the two ways can be seamless combined programmatically and the publisher's revenue can be maximized via price discrimination and optimal allocation. We consider advertisers are risk-averse, and they would be willing to purchase guaranteed impressions if the total costs are less than their private values. We also consider that an advertiser's purchase behavior can be affected by both the guaranteed price and the time interval between the purchase time and the impression delivery date. Our solution suggests an optimal percentage of future impressions to sell in advance and provides an explicit formula to calculate at what prices to sell. We find that the optimal guaranteed prices are dynamic and are non-decreasing over time. We evaluate our method with RTB datasets and find that the model adopts different strategies in allocation and pricing according to the level of competition. From the experiments we find that, in a less competitive market, lower prices of the guaranteed contracts will encourage the purchase in advance and the revenue gain is mainly contributed by the increased competition in future RTB. In a highly competitive market, advertisers are more willing to purchase the guaranteed contracts and thus higher prices are expected. The revenue gain is largely contributed by the guaranteed selling.Comment: Chen, Bowei and Yuan, Shuai and Wang, Jun (2014) A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising. In: The Eighth International Workshop on Data Mining for Online Advertising, 24 - 27 August 2014, New York Cit

    Efficient Subgraph Similarity Search on Large Probabilistic Graph Databases

    Full text link
    Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Description Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges' occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.Comment: VLDB201
    • …
    corecore