130 research outputs found
EVALUATION OF ELBOW AND FOREARM MOTION BETWEEN SIDEARM AND OVERHAND PITCHING
This study is to analyze the differences in kinematics, electromyography (EMG) and ultrasonography between two types of pitchers. We intend to observe and simulate the muscles around glenohumeral and elbow joints in different pitching motions and hope to discover the connections and differences in between. 12 pitchers from the top level were recruited. Larger elbow flexion was found in sidearm pitchers during the acceleration phase. Decrease of the distance of nerve to medial epicondyle was also found as the elbow moved to a more flexed position. More anterior translation of the ulnar nerve might occur during acceleration phase. Slightly lower flexor carpi radialis (FCR) activity was displayed in sidearm pitchers, showing that FCR might play a less crucial role in protecting medial elbow by providing less varus torque
Different Influences on Tacrolimus Pharmacokinetics by Coadministrations of Zhi Ke and Zhi Shi in Rats
Tacrolimus, an immunosuppressant with narrow therapeutic window, has been used widely in transplant patients. Grapefruit juice and pomelo have been reported to increase the blood levels of tacrolimus. Zhi Ke and Zhi Shi, the ripe peels and unripe fruits of Citrus aurantium which is chemotaxonomically related to grapefruit and pomelo, are in wide use in clinical Chinese medicine. To investigate the possible interaction of these two Citrus herbs with tacrolimus, male Sprague-Dawley rats were orally given tacrolimus (1.5 mg/kg) with and without Zhi Ke and Zhi Shi decoctions in a cross-over design. Blood samples were withdrawn via cardiopuncture at specific time and quantitated by a microparticle enzyme immunoassay. In addition, to explore the mechanism of interaction, LS 180 cell line was used for the transport study of rhodamine 123, a typical substrate of P-glycoprotein (P-gp). The results showed that Zhi Shi significantly decreased the Cmax and AUC0−t of tacrolimus by 72.4% and 72.0%, respectively, whereas Zhi Ke did not affect tacrolimus pharmacokinetics. LS 180 cell line study indicated that Zhi Shi increased the efflux activity of P-gp, enabling us to explain the decreased oral bioavailability of tacrolimus caused by Zhi Shi. Hence, we suggest that Zhi Shi be contraindicated for transplant patients treated with tacrolimus to reduce the risk of allograft rejection
Klebsiella pneumoniae Bacteremia and Capsular Serotypes, Taiwan
Capsular serotypes of 225 Klebsiella pneumoniae isolates in Taiwan were identified by using PCR. Patients infected with K1 serotypes (41 isolates) had increased community-onset bacteremia, more nonfatal diseases and liver abscesses, lower Pittsburgh bacteremia scores and mortality rates, and fewer urinary tract infections than patients infected with non–K1/K2 serotypes (147 isolates)
Identification of novel DNA methylation inhibitors via a two-component reporter gene system
<p>Abstract</p> <p>Background</p> <p>Targeting abnormal DNA methylation represents a therapeutically relevant strategy for cancer treatment as demonstrated by the US Food and Drug Administration approval of the DNA methyltransferase inhibitors azacytidine and 5-aza-2'-deoxycytidine for the treatment of myelodysplastic syndromes. But their use is associated with increased incidences of bone marrow suppression. Alternatively, procainamide has emerged as a potential DNA demethylating agent for clinical translation. While procainamide is much safer than 5-aza-2'-deoxycytidine, it requires high concentrations to be effective in DNA demethylation in suppressing cancer cell growth. Thus, our laboratories have embarked on the pharmacological exploitation of procainamide to develop potent DNA methylation inhibitors through lead optimization.</p> <p>Methods</p> <p>We report the use of a DNA methylation two-component enhanced green fluorescent protein reporter system as a screening platform to identify novel DNA methylation inhibitors from a compound library containing procainamide derivatives.</p> <p>Results</p> <p>A lead agent IM25, which exhibits substantially higher potency in <it>GSTp1 </it>DNA demethylation with lower cytotoxicity in MCF7 cells relative to procainamide and 5-aza-2'-deoxycytidine, was identified by the screening platform.</p> <p>Conclusions</p> <p>Our data provide a proof-of-concept that procainamide could be pharmacologically exploited to develop novel DNA methylation inhibitors, of which the translational potential in cancer therapy/prevention is currently under investigation.</p
Thioglycosides Are Efficient Metabolic Decoys of Glycosylation that Reduce Selectin Dependent Leukocyte Adhesion
© 2018 Elsevier Ltd Small-molecule inhibitors of glycosylation can be applied in basic science studies, and clinical investigations as anti-inflammatory, anti-metastatic, and anti-viral therapies. This article demonstrates that thioglycosides represent a class of potent metabolic decoys that resist hydrolysis, and block E-selectin-dependent leukocyte adhesion in models of inflammation
Association of ORAI1 Haplotypes with the Risk of HLA-B27 Positive Ankylosing Spondylitis
Ankylosing spondylitis (AS) is a chronic inflammation of the sacroiliac joints, spine and peripheral joints. The aetiology of ankylosing spondylitis is still unclear. Previous studies have indicated that genetics factors such as human leukocyte antigen HLA-B27 associates to AS susceptibility. We carried out a case-control study to determine whether the genetic polymorphisms of ORAI1 gene, a major component of store-operated calcium channels that involved the regulation of immune system, is a susceptibility factor to AS in a Taiwanese population. We enrolled 361 AS patients fulfilled the modified New York criteria and 379 controls from community. Five tagging single nucleotides polymorphisms (tSNPs) at ORAI1 were selected from the data of Han Chinese population in HapMap project. Clinical statuses of AS were assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Index (BAS-G). Our results indicated that subjects carrying the minor allele homozygote (CC) of the promoter SNP rs12313273 or TT homozygote of the SNP rs7135617 had an increased risk of HLA-B27 positive AS. The minor allele C of 3′UTR SNP rs712853 exerted a protective effect to HLA-B27 positive AS. Furthermore, the rs12313273/rs7135617 pairwise allele analysis found that C-G (OR 1.69, 95% CI 1.27, 2.25; p = 0.0003) and T-T (OR 1.75, 95% CI 1.36, 2.27; p<0.0001) haplotypes had a significantly association with the risk of HLA-B27-positive AS in comparison with the T-G carriers. This is the first study that indicate haplotypes of ORAI1 (rs12313273 and rs7135617) are associated with the risk of HLA-B27 positive AS
ITPKC Single Nucleotide Polymorphism Associated with the Kawasaki Disease in a Taiwanese Population
Kawasaki disease (KD) is characterized by systemic vasculitis with unknown etiology. Previous studies from Japan indicated that a gene polymorphism of ITPKC (rs28493229) is responsible for susceptibility to KD. We collected DNA samples from 1,531 Taiwanese subjects (341 KD patients and 1,190 controls) for genotyping ITPKC. In this study, no significant association was noted for the ITPKC polymorphism (rs28493229) between the controls and KD patients, although the CC genotype was overrepresented. We further combined our data with previously published case/control KD studies in the Taiwanese population and performed a meta-analysis. A significant association between rs28493229 and KD was found (Odds Ratio:1.36, 95% Confidence Interval 1.12–1.66). Importantly, a significant association was obtained between rs28493229 and KD patients with aneurysm formation (P = 0.001, under the recessive model). Taken together, our results indicated that C-allele of ITPKC SNP rs28493229 is associated with the susceptibility and aneurysm formation in KD patients in a Taiwanese population
Male Germ Cell-Specific RNA Binding Protein RBMY: A New Oncogene Explaining Male Predominance in Liver Cancer
Male gender is a risk factor for the development of hepatocellular carcinoma (HCC) but the mechanisms are not fully understood. The RNA binding motif gene on the Y chromosome (RBMY), encoding a male germ cell-specific RNA splicing regulator during spermatogenesis, is aberrantly activated in human male liver cancers. This study investigated the in vitro oncogenic effect and the possible mechanism of RBMY in human hepatoma cell line HepG2 and its in vivo effect with regards to the livers of human and transgenic mice. RBMY expression in HepG2 cells was knocked down by RNA interference and the cancer cell phenotype was characterized by soft-agar colony formation and sensitivity to hydrogen-peroxide-induced apoptosis. The results revealed that RBMY knockdown reduced the transformation and anti-apoptotic efficiency of HepG2 cells. The expression of RBMY, androgen receptor (AR) and its inhibitory variant AR45, AR-targeted genes insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP-3) was analyzed by quantitative RT-PCR. Up-regulation of AR45 variant and reduction of IGF-1 and IGFBP-3 expression was only detected in RBMY knockdown cells. Moreover, RBMY positive human male HCC expressed lower level of AR45 as compared to RBMY negative HCC tissues. The oncogenic properties of RBMY were further assessed in a transgenic mouse model. Liver-specific RBMY transgenic mice developed hepatic pre-cancerous lesions, adenoma, and HCC. RBMY also accelerated chemical carcinogen-induced hepatocarcinogenesis in transgenic mice. Collectively, these findings suggest that Y chromosome-specific RBMY is likely involved in the regulation of androgen receptor activity and contributes to male predominance of HCC
- …