25 research outputs found

    Modeling and Characteristic of Hexapolarized MIMO Channel Consisting of Two Plane Mirrors With Varying Included Angle

    No full text

    Exposure to essential and non-essential trace elements and risks of congenital heart defects: A narrative review

    Get PDF
    Congenital heart defects (CHDs) are congenital abnormalities involving the gross structures of the heart and large blood vessels. Environmental factors, genetic factors and their interactions may contribute to the pathogenesis of CHDs. Generally, trace elements can be classified into essential trace elements and non-essential trace elements. Essential trace elements such as copper (Cu), zinc (Zn), iron (Fe), selenium (Se), and manganese (Mn) play important roles in human biological functions such as metabolic function, oxidative stress regulation, and embryonic development. Non-essential trace elements such as cadmium (Cd), arsenic (As), lead (Pb), nickle (Ni), barium (Ba), chromium (Cr) and mercury (Hg) are harmful to health even at low concentrations. Recent studies have revealed the potential involvement of these trace elements in the pathogenesis of CHDs. In this review, we summarized current studies exploring exposure to essential and non-essential trace elements and risks of CHDs, in order to provide further insights for the pathogenesis and prevention of CHDs

    Molecular insight into the nanoconfined calcite–solution interface

    No full text

    Enhancing Target Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn-Zn Ferrite Magnetic Nanoparticles

    No full text
    Radiotherapy (RT) is a major treatment method for non-small-cell lung cancer (NSCLC), and development of new treatment modality is now critical to amplify the negative effects of RT on tumors. In this study, we demonstrated a nanoparticle-loaded block copolymer micellar system for cancer hyperthermia treatment (HT) that can be used for synergistic therapy under alternating magnetic field (AMF) and radiation field. Block copolymer micelles (polyethylene glycol-block-polycaprolactone, or PEG-PCL) containing hyaluronic acid (HA) and Mn–Zn ferrite magnetic nanoparticles (MZF) were fabricated via a two-step preparation. HA-modified Mn–Zn ferrite magnetic nanoparticles (MZF-HA) can be enriched in CD44 highly expressing tumor cells, such as A549 (human lung adenocarcinoma cell line), through an active targeting mechanism via receptor–ligand binding of HA and CD44 (HA receptor). MZF can generate thermal energy under an AMF, leading to a local temperature increase to approximately 43 °C at tumor sites for mild HT, and the increased tumor oxygenation can enhance the therapeutic effect of RT. In vitro experiments show that MZF-HA is able to achieve excellent specific targeting performance toward A549 cells with excellent biocompatibility as well as enhanced therapy performance under HT and RT in vitro by apoptosis flow cytometry. In the A549 subcutaneous tumor xenografts model, MRI confirms the enrichment of MZF-HA in tumor, and hypoxia immunohistochemistry analysis (IHC) proved the increased tumor oxygenation after HT. Furthermore, the tumor volume decreases to 49.6% through the combination of HT and RT in comparison with the 58.8% increase of the untreated group. These results suggest that the application of MZF-HA is able to increase the therapeutic effect of RT on A549 and can be used for further clinical NSCLC treatment evaluation

    6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Get PDF
    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal
    corecore