387 research outputs found

    Determination of impact parameter for CEE with Digi-input neural networks

    Full text link
    Impact parameter is an important quantity which characterizes the centrality in nucleus-nucleus collision geometry. The determination of impact parameter in real experiments takes use of the hits on detector system or the reconstructed tracks of the secondary particles. As a task of feature recognition, methods such as sharp cut-off, Bayesian methods and Neural Networks (NN) has been studied and applied. However, in the situation of the Cooler-storage-ring External-target Experiment (CEE), the low beam energy brings a lapse of dependency between impact parameter and charged particle multiplicity, which decreases the validity of the explicit determination methods. This work proposes a regressor constructed with Graph Attention neural network, which takes the hit-level data as input. This model has shown a mean absolute error of 0.496 fm for the IQMD collision data of the UU system at 0.5 AMeV. The performance of such a model is compared with reference models, showing its capacity in handling the original but potentially interrelated digi information.Comment: 13 pages, 9 figure

    Joint Computing Offloading and Resource Allocation for Classification Intelligent Tasks in MEC Systems

    Full text link
    Mobile edge computing (MEC) enables low-latency and high-bandwidth applications by bringing computation and data storage closer to end-users. Intelligent computing is an important application of MEC, where computing resources are used to solve intelligent task-related problems based on task requirements. However, efficiently offloading computing and allocating resources for intelligent tasks in MEC systems is a challenging problem due to complex interactions between task requirements and MEC resources. To address this challenge, we investigate joint computing offloading and resource allocation for intelligent tasks in MEC systems. Our goal is to optimize system utility by jointly considering computing accuracy and task delay to achieve maximum system performance. We focus on classification intelligence tasks and formulate an optimization problem that considers both the accuracy requirements of tasks and the parallel computing capabilities of MEC systems. To solve the optimization problem, we decompose it into three subproblems: subcarrier allocation, computing capacity allocation, and compression offloading. We use convex optimization and successive convex approximation to derive closed-form expressions for the subcarrier allocation, offloading decisions, computing capacity, and compressed ratio. Based on our solutions, we design an efficient computing offloading and resource allocation algorithm for intelligent tasks in MEC systems. Our simulation results demonstrate that our proposed algorithm significantly improves the performance of intelligent tasks in MEC systems and achieves a flexible trade-off between system revenue and cost considering intelligent tasks compared with the benchmarks.Comment: arXiv admin note: substantial text overlap with arXiv:2307.0274

    Image Projective Transformation Rectification with Synthetic Data for Smartphone-captured Chest X-ray Photos Classification

    Full text link
    Classification on smartphone-captured chest X-ray (CXR) photos to detect pathologies is challenging due to the projective transformation caused by the non-ideal camera position. Recently, various rectification methods have been proposed for different photo rectification tasks such as document photos, license plate photos, etc. Unfortunately, we found that none of them is suitable for CXR photos, due to their specific transformation type, image appearance, annotation type, etc. In this paper, we propose an innovative deep learning-based Projective Transformation Rectification Network (PTRN) to automatically rectify CXR photos by predicting the projective transformation matrix. To the best of our knowledge, it is the first work to predict the projective transformation matrix as the learning goal for photo rectification. Additionally, to avoid the expensive collection of natural data, synthetic CXR photos are generated under the consideration of natural perturbations, extra screens, etc. We evaluate the proposed approach in the CheXphoto smartphone-captured CXR photos classification competition hosted by the Stanford University Machine Learning Group, our approach won first place with a huge performance improvement (ours 0.850, second-best 0.762, in AUC). A deeper study demonstrates that the use of PTRN successfully achieves the classification performance on the spatially transformed CXR photos to the same level as on the high-quality digital CXR images, indicating PTRN can eliminate all negative impacts of projective transformation on the CXR photos

    On the Quantum Mechanics for One Photon

    Full text link
    This paper revisits the quantum mechanics for one photon from the modern viewpoint and by the geometrical method. Especially, besides the ordinary (rectangular) momentum representation, we provide an explicit derivation for the other two important representations, called the cylindrically symmetrical representation and the spherically symmetrical representation, respectively. These other two representations are relevant to some current photon experiments in quantum optics. In addition, the latter is useful for us to extract the information on the quantized black holes. The framework and approach presented here are also applicable to other particles with arbitrary mass and spin, such as the particle with spin 1/2.Comment: 15 pages, typos corrected, references added, corrections and improvements made owing to the anonymous referee's responsible and helpful remarks, accepted for publication in Journal of Mathematical Physics:

    DiffIR: Efficient Diffusion Model for Image Restoration

    Full text link
    Diffusion model (DM) has achieved SOTA performance by modeling the image synthesis process into a sequential application of a denoising network. However, different from image synthesis, image restoration (IR) has a strong constraint to generate results in accordance with ground-truth. Thus, for IR, traditional DMs running massive iterations on a large model to estimate whole images or feature maps is inefficient. To address this issue, we propose an efficient DM for IR (DiffIR), which consists of a compact IR prior extraction network (CPEN), dynamic IR transformer (DIRformer), and denoising network. Specifically, DiffIR has two training stages: pretraining and training DM. In pretraining, we input ground-truth images into CPENS1_{S1} to capture a compact IR prior representation (IPR) to guide DIRformer. In the second stage, we train the DM to directly estimate the same IRP as pretrained CPENS1_{S1} only using LQ images. We observe that since the IPR is only a compact vector, DiffIR can use fewer iterations than traditional DM to obtain accurate estimations and generate more stable and realistic results. Since the iterations are few, our DiffIR can adopt a joint optimization of CPENS2_{S2}, DIRformer, and denoising network, which can further reduce the estimation error influence. We conduct extensive experiments on several IR tasks and achieve SOTA performance while consuming less computational costs. Code is available at \url{https://github.com/Zj-BinXia/DiffIR}.Comment: This paper is accepted by ICCV2023. Codes and models are available at https://github.com/Zj-BinXia/DiffI

    Germline Mutations in Patients With Early-Onset Prostate Cancer.

    Get PDF
    Objective: To investigate the inherited mutations and their association with clinical features and treatment response in young-onset prostate cancer patients. Method: Targeted gene sequencing on 139 tumor susceptibility genes was conducted with a total of 24 patients diagnosed with PCa under the age of 63 years old. Meanwhile, the related clinical information of those patients is collected and analyzed. Results: Sixty-two germline mutations in 45 genes were verified in 22 patients. Conclusion: Mutations in DRGs are more prevalent in early-onset PCa with advanced clinical stages, and these patients had shorter progression-free survival. ADT Combined with either radiotherapy or chemotherapy may be effective in treating PCa caused by HRR-related gene mutations

    Structured Sparsity Learning for Efficient Video Super-Resolution

    Full text link
    The high computational costs of video super-resolution (VSR) models hinder their deployment on resource-limited devices, (e.g., smartphones and drones). Existing VSR models contain considerable redundant filters, which drag down the inference efficiency. To prune these unimportant filters, we develop a structured pruning scheme called Structured Sparsity Learning (SSL) according to the properties of VSR. In SSL, we design pruning schemes for several key components in VSR models, including residual blocks, recurrent networks, and upsampling networks. Specifically, we develop a Residual Sparsity Connection (RSC) scheme for residual blocks of recurrent networks to liberate pruning restrictions and preserve the restoration information. For upsampling networks, we design a pixel-shuffle pruning scheme to guarantee the accuracy of feature channel-space conversion. In addition, we observe that pruning error would be amplified as the hidden states propagate along with recurrent networks. To alleviate the issue, we design Temporal Finetuning (TF). Extensive experiments show that SSL can significantly outperform recent methods quantitatively and qualitatively. We will release codes and models

    Knowledge Distillation based Degradation Estimation for Blind Super-Resolution

    Full text link
    Blind image super-resolution (Blind-SR) aims to recover a high-resolution (HR) image from its corresponding low-resolution (LR) input image with unknown degradations. Most of the existing works design an explicit degradation estimator for each degradation to guide SR. However, it is infeasible to provide concrete labels of multiple degradation combinations (e.g., blur, noise, jpeg compression) to supervise the degradation estimator training. In addition, these special designs for certain degradation, such as blur, impedes the models from being generalized to handle different degradations. To this end, it is necessary to design an implicit degradation estimator that can extract discriminative degradation representation for all degradations without relying on the supervision of degradation ground-truth. In this paper, we propose a Knowledge Distillation based Blind-SR network (KDSR). It consists of a knowledge distillation based implicit degradation estimator network (KD-IDE) and an efficient SR network. To learn the KDSR model, we first train a teacher network: KD-IDET_{T}. It takes paired HR and LR patches as inputs and is optimized with the SR network jointly. Then, we further train a student network KD-IDES_{S}, which only takes LR images as input and learns to extract the same implicit degradation representation (IDR) as KD-IDET_{T}. In addition, to fully use extracted IDR, we design a simple, strong, and efficient IDR based dynamic convolution residual block (IDR-DCRB) to build an SR network. We conduct extensive experiments under classic and real-world degradation settings. The results show that KDSR achieves SOTA performance and can generalize to various degradation processes. The source codes and pre-trained models will be released.Comment: ICLR2023, code is available at https://github.com/Zj-BinXia/KDS
    corecore