19,458 research outputs found

    Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study

    Get PDF
    Using first-principles calculations within density functional theory, we investigate the intrinsic spin Hall effect in monolayers of group-VI transition-metal dichalcogenides MX2 (M = Mo, W and X = S, Se). MX2 monolayers are direct band-gap semiconductors with two degenerate valleys located at the corners of the hexagonal Brillouin zone. Because of the inversion symmetry breaking and the strong spin-orbit coupling, charge carriers in opposite valleys carry opposite Berry curvature and spin moment, giving rise to both a valley- and a spin-Hall effect. The intrinsic spin Hall conductivity (ISHC) in p-doped samples is found to be much larger than the ISHC in n-doped samples due to the large spin-splitting at the valence band maximum. We also show that the ISHC in inversion-symmetric bulk dichalcogenides is an order of magnitude smaller compared to monolayers. Our result demonstrates monolayer dichalcogenides as an ideal platform for the integration of valleytronics and spintronics.Comment: published version (7 pages, 6 figures

    Different critical points of chiral and deconfinement phase transitions in (2+1)-dimensional fermion-gauge interacting model

    Get PDF
    Based on the truncated Dyson-Schwinger equations for fermion and massive boson propagators in QED3_3, the fermion chiral condensate and the mass singularities of the fermion propagator via the Schwinger function are investigated. It is shown that the critical point of chiral phase transition is apparently different from that of deconfinement phase transition and in Nambu phase the fermion is confined only for small gauge boson mass.Comment: 5 Pages and 3 figure
    • …
    corecore