145 research outputs found

    An overview on nonlinear porous flow in low permeability porous media

    Get PDF
    AbstractThis paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir, is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments

    Magnetic Crosstalk Suppression and Probe Miniaturization of Coupled Core Fluxgate Sensors

    Get PDF
    This paper demonstrates the probe structure optimization of coupled core fluxgate magnetic sensors through finite element analysis. The obtained modelling results have been used to optimize the probe structures from horizontal- to vertical- arrangements for magnetic crosstalk suppression and probe miniaturization. The finite element analysis show that with the same distance between each adjacent fluxgate elements, the magnetic crosstalk is suppressed by 6 times and the volume is reduced by 2 times after the optimization. Furthermore, the miniaturized probes with low magnetic crosstalk have been designed and implemented. The experimental results which showed more than 5 times suppression of magnetic crosstalk verified the simulation results. Therefore, the results provide detailed reference to cope with the contradiction between volume miniaturization and magnetic crosstalk suppression in magnetic sensor-array design

    Thrombospondin1 Deficiency Reduces Obesity-Associated Inflammation and Improves Insulin Sensitivity in a Diet-Induced Obese Mouse Model

    Get PDF
    Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity

    Performance degradation effect countermeasures in residence times difference (RTD) fluxgate magnetic sensors

    Get PDF
    This paper aims to explore the detection defect of residence times difference (RTD) fluxgate working in low-power mode and present the countermeasures for sensor resolution improvement and linearity enhancement. The main defects are amplitude and symmetry changes induced in the output spikes of fluxgate probe due to the magnetic field. These defects lead to thresholds deviation and asymmetry, then cause severe performance degradation especially on detection resolution and linearity according to the RTD theory. To overcome such effects, the optimized RTD method based on voltage extraction and feedback technology is proposed to implement magnetic field compensation and achieve a zero-field running regime of the RTD fluxgate. In this regard, the sensor linearity is improved by a factor of 38, and the resolution degradation effect is suppressed more than 6 times, verified by the laboratory experiments. The optimized detection method proposed in this paper demonstrated a great potential to achieve lower power consumption and will make the RTD fluxgate more promising technology among bio-magnetic applications

    Identification of Genes Related to White and Black Plumage Formation by RNA-Seq from White and Black Feather Bulbs in Ducks

    Get PDF
    To elucidate the genes involved in the formation of white and black plumage in ducks, RNA from white and black feather bulbs of an F2 population were analyzed using RNA-Seq. A total of 2,642 expressed sequence tags showed significant differential expression between white and black feather bulbs. Among these tags, 186 matched 133 annotated genes that grouped into 94 pathways. A number of genes controlling melanogenesis showed differential expression between the two types of feather bulbs. This differential expression was confirmed by qPCR analysis and demonstrated that Tyr (Tyrosinase) and Tyrp1 (Tyrosinase-related protein-1) were expressed not in W-W (white feather bulb from white dorsal plumage) and W-WB (white feather bulb from white-black dorsal plumage) but in B-B (black feather bulb from black dorsal plumage) and B-WB (black feather bulb from white-black dorsal plumage) feather bulbs. Tyrp2 (Tyrosinase-related protein-2) gene did not show expression in the four types of feather bulbs but expressed in retina. C-kit (The tyrosine kinase receptor) expressed in all of the samples but the relative mRNA expression in B-B or B-WB was approximately 10 fold higher than that in W-W or W-WB. Additionally, only one of the two Mitf isoforms was associated with plumage color determination. Downregulation of c-Kit and Mitf in feather bulbs may be the cause of white plumage in the duck
    corecore