596 research outputs found

    Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO2 laser welding

    Full text link
    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high Q-factor of 2.12*10^6 in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.Comment: 7 pages, 5 figure

    Five-dimensional generalized f(R)f(R) gravity with curvature-matter coupling

    Get PDF
    The generalized f(R)f(R) gravity with curvature-matter coupling in five-dimensional (5D) spacetime can be established by assuming a hypersurface-orthogonal spacelike Killing vector field of 5D spacetime, and it can be reduced to the 4D formulism of FRW universe. This theory is quite general and can give the corresponding results to the Einstein gravity, f(R)f(R) gravity with both no-coupling and non-minimal coupling in 5D spacetime as special cases, that is, we would give the some new results besides previous ones given by Ref.\cite{60}. Furthermore, in order to get some insight into the effects of this theory on the 4D spacetime, by considering a specific type of models with f1(R)=f2(R)=αRmf_{1}(R)=f_{2}(R)=\alpha R^{m} and B(Lm)=Lm=ρB(L_{m})=L_{m}=-\rho, we not only discuss the constraints on the model parameters mm, nn, but also illustrate the evolutionary trajectories of the scale factor a(t)a(t), the deceleration parameter q(t)q(t) and the scalar field ϵ(t)\epsilon(t), ϕ(t)\phi(t) in the reduced 4D spacetime. The research results show that this type of f(R)f(R) gravity models given by us could explain the current accelerated expansion of our universe without introducing dark energy.Comment: arXiv admin note: text overlap with arXiv:0912.4581, arXiv:gr-qc/0411066 by other author

    On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes

    Full text link
    We demonstrate electro-optic tuning of an on-chip lithium niobate microresonator with integrated in-plane microelectrodes. First two metallic microelectrodes on the substrate were formed via femtosecond laser process. Then a high-Q lithium niobate microresonator located between the microelectrodes was fabricated by femtosecond laser direct writing accompanied by focused ion beam milling. Due to the efficient structure designing, high electro-optical tuning coefficient of 3.41 pm/V was observed.Comment: 6 pages, 3 figure
    corecore