508,288 research outputs found
Reflection and transmission coefficients of a thin bed
The study of thin-bed seismic response is an important part in lithologic and methane reservoir modeling, critical for predicting their physical attributes and/or elastic parameters. The complex propagator matrix for the exact reflections and transmissions of thin beds limits their application in thin-bed inversion. Therefore, approximation formulas with a high accuracy and a relatively simple form are needed for thin-bed seismic analysis and inversion. We have derived thin-bed reflection and transmission coefficients, defined in terms of displacements, and approximated them to be in a quasi-Zoeppritz matrix form under the assumption that the middle layer has a very thin thickness. We have verified the approximation accuracy through numerical calculation and concluded that the errors in PP-wave reflection coefficients RPP are generally smaller than 10% when the thin-bed thicknesses are smaller than one-eighth of the PP-wavelength. The PS-wave reflection coefficients RPS have lower approximation accuracy than RPP for the same ratios of thicknesses to their respective wavelengths, and the RPS approximation is not acceptable for incident angles approaching the critical angles (when they exist) except in the case of extremely strong impedance difference. Errors in phase for the RPP and RPS approximation are less than 10% for the cases of thicknesses less than one-tenth of the wavelengths. As expected, a thinner middle layer and a weaker impedance difference would result in higher approximation accuracy
A More Precise Extraction of |V_{cb}| in HQEFT of QCD
The more precise extraction for the CKM matrix element |V_{cb}| in the heavy
quark effective field theory (HQEFT) of QCD is studied from both exclusive and
inclusive semileptonic B decays. The values of relevant nonperturbative
parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD.
Using the most recent experimental data for B decay rates, |V_{cb}| is updated
to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l
\nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l
\nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from
inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure
Comment on "Modified Coulomb Law in a Strongly Magnetized Vacuum"
This is a comment on Phys. Rev. Lett. 98, 180403 (2007) [arXiv:0704.2162].Comment: 1 page, comment on arXiv:0704.2162, published versio
Experimental and computational investigation of confined laser-induced breakdown spectroscopy
This paper presents an experimental and computational study on laser-induced breakdown spectroscopy (LIBS) for both unconfined flat surface and confined cavity cases. An integrated LIBS system is employed to acquire the shockwave and plasma plume images. The computational model consists of the mass, momentum, and energy conservation equations, which are necessary to describe shockwave behaviors. The numerical predictions are validated against shadowgraphic images in terms of shockwave expansion and reflection. The three-dimensional (3D) shockwave morphology and velocity fields are displayed and discussed
Calibration of LAMOST Stellar Surface Gravities Using the Kepler Asteroseismic Data
Asteroseismology is a powerful tool to precisely determine the evolutionary
status and fundamental properties of stars. With the unprecedented precision
and nearly continuous photometric data acquired by the NASA Kepler mission,
parameters of more than 10 stars have been determined nearly consistently.
However, most studies still use photometric effective temperatures (Teff) and
metallicities ([Fe/H]) as inputs, which are not sufficiently accurate as
suggested by previous studies. We adopted the spectroscopic Teff and [Fe/H]
values based on the LAMOST low-resolution spectra (R~1,800), and combined them
with the global oscillation parameters to derive the physical parameters of a
large sample of stars. Clear trends were found between {\Delta}logg(LAMOST -
seismic) and spectroscopic Teff as well as logg, which may result in an
overestimation of up to 0.5 dex for the logg of giants in the LAMOST catalog.
We established empirical calibration relations for the logg values of dwarfs
and giants. These results can be used for determining the precise distances to
these stars based on their spectroscopic parameters.Comment: 22 pages, 13 figures and 3 tables, accepted for publication in
Astronomical Journal. Table 3 is available at
http://lwang.info/research/kepler_lamost
- …