508,288 research outputs found

    Reflection and transmission coefficients of a thin bed

    Get PDF
    The study of thin-bed seismic response is an important part in lithologic and methane reservoir modeling, critical for predicting their physical attributes and/or elastic parameters. The complex propagator matrix for the exact reflections and transmissions of thin beds limits their application in thin-bed inversion. Therefore, approximation formulas with a high accuracy and a relatively simple form are needed for thin-bed seismic analysis and inversion. We have derived thin-bed reflection and transmission coefficients, defined in terms of displacements, and approximated them to be in a quasi-Zoeppritz matrix form under the assumption that the middle layer has a very thin thickness. We have verified the approximation accuracy through numerical calculation and concluded that the errors in PP-wave reflection coefficients RPP are generally smaller than 10% when the thin-bed thicknesses are smaller than one-eighth of the PP-wavelength. The PS-wave reflection coefficients RPS have lower approximation accuracy than RPP for the same ratios of thicknesses to their respective wavelengths, and the RPS approximation is not acceptable for incident angles approaching the critical angles (when they exist) except in the case of extremely strong impedance difference. Errors in phase for the RPP and RPS approximation are less than 10% for the cases of thicknesses less than one-tenth of the wavelengths. As expected, a thinner middle layer and a weaker impedance difference would result in higher approximation accuracy

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Comment on "Modified Coulomb Law in a Strongly Magnetized Vacuum"

    Get PDF
    This is a comment on Phys. Rev. Lett. 98, 180403 (2007) [arXiv:0704.2162].Comment: 1 page, comment on arXiv:0704.2162, published versio

    Experimental and computational investigation of confined laser-induced breakdown spectroscopy

    Get PDF
    This paper presents an experimental and computational study on laser-induced breakdown spectroscopy (LIBS) for both unconfined flat surface and confined cavity cases. An integrated LIBS system is employed to acquire the shockwave and plasma plume images. The computational model consists of the mass, momentum, and energy conservation equations, which are necessary to describe shockwave behaviors. The numerical predictions are validated against shadowgraphic images in terms of shockwave expansion and reflection. The three-dimensional (3D) shockwave morphology and velocity fields are displayed and discussed

    Calibration of LAMOST Stellar Surface Gravities Using the Kepler Asteroseismic Data

    Full text link
    Asteroseismology is a powerful tool to precisely determine the evolutionary status and fundamental properties of stars. With the unprecedented precision and nearly continuous photometric data acquired by the NASA Kepler mission, parameters of more than 104^4 stars have been determined nearly consistently. However, most studies still use photometric effective temperatures (Teff) and metallicities ([Fe/H]) as inputs, which are not sufficiently accurate as suggested by previous studies. We adopted the spectroscopic Teff and [Fe/H] values based on the LAMOST low-resolution spectra (R~1,800), and combined them with the global oscillation parameters to derive the physical parameters of a large sample of stars. Clear trends were found between {\Delta}logg(LAMOST - seismic) and spectroscopic Teff as well as logg, which may result in an overestimation of up to 0.5 dex for the logg of giants in the LAMOST catalog. We established empirical calibration relations for the logg values of dwarfs and giants. These results can be used for determining the precise distances to these stars based on their spectroscopic parameters.Comment: 22 pages, 13 figures and 3 tables, accepted for publication in Astronomical Journal. Table 3 is available at http://lwang.info/research/kepler_lamost

    Generalized seismic wavelets

    Get PDF

    The Ricker wavelet and the Lambert W function

    Get PDF

    Frequencies of the Ricker wavelet

    Get PDF
    • …
    corecore