3 research outputs found

    Glymphatic clearance estimated using diffusion tensor imaging along perivascular spaces is reduced after traumatic brain injury and correlates with plasma neurofilament light, a biomarker of injury severity

    Get PDF
    The glymphatic system is a perivascular fluid clearance system, most active during sleep, considered important for clearing the brain of waste products and toxins. Glymphatic failure is hypothesized to underlie brain protein deposition in neurodegenerative disorders like Alzheimer's disease. Preclinical evidence suggests that a functioning glymphatic system is also essential for recovery from traumatic brain injury, which involves release of debris and toxic proteins that need to be cleared from the brain. In a cross-sectional observational study, we estimated glymphatic clearance using diffusion tensor imaging along perivascular spaces, an MRI-derived measure of water diffusivity surrounding veins in the periventricular region, in 13 non-injured controls and 37 subjects who had experienced traumatic brain injury ∼5 months previously. We additionally measured the volume of the perivascular space using T2-weighted MRI. We measured plasma concentrations of neurofilament light chain, a biomarker of injury severity, in a subset of subjects. Diffusion tensor imaging along perivascular spaces index was modestly though significantly lower in subjects with traumatic brain injury compared with controls when covarying for age. Diffusion tensor imaging along perivascular spaces index was significantly, negatively correlated with blood levels of neurofilament light chain. Perivascular space volume did not differ in subjects with traumatic brain injury as compared with controls and did not correlate with blood levels of neurofilament light chain, suggesting it may be a less sensitive measure for injury-related perivascular clearance changes. Glymphatic impairment after traumatic brain injury could be due to mechanisms such as mislocalization of glymphatic water channels, inflammation, proteinopathy and/or sleep disruption. Diffusion tensor imaging along perivascular spaces is a promising method for estimating glymphatic clearance, though additional work is needed to confirm results and assess associations with outcome. Understanding changes in glymphatic functioning following traumatic brain injury could inform novel therapies to improve short-term recovery and reduce later risk of neurodegeneration

    Brain Fluid Clearance After Traumatic Brain Injury Measured Using Dynamic Positron Emission Tomography

    No full text
    Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.</p
    corecore