5 research outputs found

    Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein

    Get PDF
    CRISPR-Cas9がヒト細胞内のRNAで阻害されてしまう現象を発見し、iPS細胞での効率的な相同組み換えゲノム編集技術を実現. 京都大学プレスリリース. 2021-03-12.A simple step to enhance CRISPR-Cas9 genome editing. 京都大学プレスリリース. 2021-03-12.Combined with CRISPR-Cas9 technology and single-stranded oligodeoxynucleotides (ssODNs), specific single-nucleotide alterations can be introduced into a targeted genomic locus in induced pluripotent stem cells (iPSCs); however, ssODN knockin frequency is low compared with deletion induction. Although several Cas9 transduction methods have been reported, the biochemical behavior of CRISPR-Cas9 nuclease in mammalian cells is yet to be explored. Here, we investigated intrinsic cellular factors that affect Cas9 cleavage activity in vitro. We found that intracellular RNA, but not DNA or protein fractions, inhibits Cas9 from binding to single guide RNA (sgRNA) and reduces the enzymatic activity. To prevent this, precomplexing Cas9 and sgRNA before delivery into cells can lead to higher genome editing activity compared with Cas9 overexpression approaches. By optimizing electroporation parameters of precomplexed ribonucleoprotein and ssODN, we achieved efficiencies of single-nucleotide correction as high as 70% and loxP insertion up to 40%. Finally, we could replace the HLA-C1 allele with the C2 allele to generate histocompatibility leukocyte antigen custom-edited iPSCs

    Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping

    Get PDF
    Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond

    A Novel Gemini Vitamin D Analog Represses the Expression of a Stem Cell Marker CD44 in Breast Cancer

    No full text
    CD44 is a multifunctional transmembrane protein involved in cell proliferation, angiogenesis, invasion, and metastasis. CD44 is identified as a cancer stem cell marker, and the CD44-positive breast cancer cells are enriched in residual breast cancer cell populations after conventional therapies, suggesting that CD44 may be an important target for cancer prevention and therapy. Therefore, we investigated for the inhibitory effect of a novel Gemini vitamin D analog, 1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-cholecalciferol (BXL0124), on mammary tumor growth and CD44 expression in MCF10DCIS.com human breast cancer in vitro and in vivo. MCF10DCIS.com cells were injected into mammary fat pads in immunodeficient mice, and BXL0124 was then administered intraperitoneally (0.1 μg/kg body weight) or orally (0.03 or 0.1 μg/kg body weight) 6 days a week for 5 weeks. At necropsy, mammary tumors and blood were collected for evaluating tumor growth, CD44 expression, and serum calcium level. BXL0124 suppressed mammary tumor growth and markedly decreased the expression of CD44 protein in MCF10DCIS xenograft tumors without causing hypercalcemic toxicity. BXL0124 also inhibited the expression of CD44 protein and mRNA as well as the transcriptional activity of the CD44 promoter in cultured MCF10DCIS.com cells. The repression of CD44 expression induced by BXL0124 was blocked by siRNA vitamin D receptor (VDR), indicating that the regulation of CD44 expression by BXL0124 is a VDR-dependent event. The novel Gemini vitamin D analog, BXL0124, represses CD44 expression in MCF10DCIS.com cells in vitro and in xenograft tumors, suggesting an inhibitory role of a Gemini vitamin D derivative on breast cancer stem cells

    The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability

    No full text
    Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder
    corecore