118 research outputs found

    Electronic origin of spin-phonon coupling effect in transition-metal perovskites

    Full text link
    By applying Wannier-based extended Kugel-Khomskii model, we carry out first-principles calculations and electronic structure analysis to understand the spin-phonon coupling effect in transition-metal perovskites. We demonstrate the successful application of our approach to SrMnO3_3 and BiFeO3_3. We show that both the electron orbitals under crystal field splitting and the electronic configuration should be taken into account in order to understand the large variances of spin-phonon coupling effects among various phonon modes as well as in different materials.Comment: 5 pages, 1 figur

    A local energy market for electricity and hydrogen

    Get PDF

    Interface induced giant magnetoelectric coupling in multiferroic superlattices

    Full text link
    The electric and magnetic properties of (BaTiO3_3)n_n/(CaMnO3_3)n_n short-period superlattices are studied by the first-principles calculations. The local electric polarizations in the CaMnO3_3 layers are significant, comparable to that in the BaTiO3_3 layers. Remarkably, the electric polarization is almost doubled when the spin configuration changes from antiferromagnetic to ferromagnetic in the superlattices, indicating a giant magnetoelectric coupling. This enhancement of the magnetoelectric coupling is due to the suppression of the antiferrodistortive mode in the CaMnO3_3 layers at the interfaces

    Tuning the Magnetic Ordering Temperature of Hexagonal Ferrites by Structural Distortion Control

    Get PDF
    To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (TN). Using the symmetry analysis, we show that unlike most antiferromagnetic rare-earth transition-metal perovskites, a larger structural distortion leads to a higher TN in hexagonal ferrites and manganites, because the K3 structural distortion induces the three-dimensional magnetic ordering, which is forbidden in the undistorted structure by symmetry. We also revealed a near-linear relation between TN and the tolerance factor and a power-law relation between TN and the K3 distortion amplitude. Following the analysis, a record-high TN (185 K) among hexagonal ferrites was predicted in hexagonal ScFeO3 and experimentally verified in epitaxially stabilized films. These results add to the paradigm of spin-lattice coupling in antiferromagnetic oxides and suggests further tunability of hexagonal ferrites if more lattice distortion can be achieved

    Stabilization of highly polar BiFeO3_3-like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattices

    Full text link
    In ABO3 perovskites, oxygen octahedron rotations are common structural distortions that can promote large ferroelectricity in BiFeO3 with an R3c structure [1], but suppress ferroelectricity in CaTiO3 with a Pbnm symmetry [2]. For many CaTiO3-like perovskites, the BiFeO3 structure is a metastable phase. Here, we report the stabilization of the highly-polar BiFeO3-like phase of CaTiO3 in a BaTiO3/CaTiO3 superlattice grown on a SrTiO3 substrate. The stabilization is realized by a reconstruction of oxygen octahedron rotations at the interface from the pattern of nonpolar bulk CaTiO3 to a different pattern that is characteristic of a BiFeO3 phase. The reconstruction is interpreted through a combination of amplitude-contrast sub 0.1nm high-resolution transmission electron microscopy and first-principles theories of the structure, energetics, and polarization of the superlattice and its constituents. We further predict a number of new artificial ferroelectric materials demonstrating that nonpolar perovskites can be turned into ferroelectrics via this interface mechanism. Therefore, a large number of perovskites with the CaTiO3 structure type, which include many magnetic representatives, are now good candidates as novel highly-polar multiferroic materials [3].Comment: Phys. Rev. X, in productio

    X-ray absorption of liquid water by advanced ab initio methods

    Full text link
    Oxygen K-edge X-ray absorption spectra of liquid water are computed based on the configurations from advanced ab initio molecular dynamics simulations, as well as an electron excitation theory from the GW method. One one hand, the molecular structures of liquid water are accurately predicted by including both van der Waals interactions and hybrid functional (PBE0). On the other hand, the dynamic screening effects on electron excitation are approximately described by the recently developed enhanced static Coulomb hole and screened exchange approximation by Kang and Hybertsen [Phys. Rev. B 82, 195108 (2010)]. The resulting spectra of liquid water are in better quantitative agreement with the experimental spectra due to the softened hydrogen bonds and the slightly broadened spectra originating from the better screening model.Comment: 10 pages, 5 figures, accepted by Phys. Rev.

    Deep neural network for the dielectric response of insulators

    Full text link
    We introduce a deep neural network to model in a symmetry preserving way the environmental dependence of the centers of the electronic charge. The model learns from ab-initio density functional theory, wherein the electronic centers are uniquely assigned by the maximally localized Wannier functions. When combined with the Deep Potential model of the atomic potential energy surface, the scheme predicts the dielectric response of insulators for trajectories inaccessible to direct ab-initio simulation. The scheme is non-perturbative and can capture the response of a mutating chemical environment. We demonstrate the approach by calculating the infrared spectra of liquid water at standard conditions, and of ice under extreme pressure, when it transforms from a molecular to an ionic crystal
    corecore