1,276 research outputs found

    Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization'' by V. Koltchinskii

    Full text link
    Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization'' by V. Koltchinskii [arXiv:0708.0083]Comment: Published at http://dx.doi.org/10.1214/009053606000001055 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generalization error for multi-class margin classification

    Full text link
    In this article, we study rates of convergence of the generalization error of multi-class margin classifiers. In particular, we develop an upper bound theory quantifying the generalization error of various large margin classifiers. The theory permits a treatment of general margin losses, convex or nonconvex, in presence or absence of a dominating class. Three main results are established. First, for any fixed margin loss, there may be a trade-off between the ideal and actual generalization performances with respect to the choice of the class of candidate decision functions, which is governed by the trade-off between the approximation and estimation errors. In fact, different margin losses lead to different ideal or actual performances in specific cases. Second, we demonstrate, in a problem of linear learning, that the convergence rate can be arbitrarily fast in the sample size nn depending on the joint distribution of the input/output pair. This goes beyond the anticipated rate O(n1)O(n^{-1}). Third, we establish rates of convergence of several margin classifiers in feature selection with the number of candidate variables pp allowed to greatly exceed the sample size nn but no faster than exp(n)\exp(n).Comment: Published at http://dx.doi.org/10.1214/07-EJS069 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Xiaotong Wang, Violin

    Get PDF
    Violin Concerto / Robert Schumann; Sonata for Violin and Cello / Maurice Rave

    Robust retrieval of material chemical states in X-ray microspectroscopy

    Full text link
    X-ray microspectroscopic techniques are essential for studying morphological and chemical changes in materials, providing high-resolution structural and spectroscopic information. However, its practical data analysis for reliably retrieving the chemical states remains a major obstacle to accelerating the fundamental understanding of materials in many research fields. In this work, we propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem, which is robust to noise and spectral variability. Moreover, this framework is not limited to the analysis of two-state material chemistry, making it an effective alternative to conventional and widely-used methods. In addition, an alternative directional multiplier method with provable convergence is applied to obtain the solution efficiently. Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions such as low signal-to-noise ratios and overlapping spectral features. Extensive experimental results on simulated and real datasets demonstrate its effectiveness and reliability.Comment: 12 page
    corecore