2,749 research outputs found

    Coherent states, displaced number states and Laguerre polynomial states for su(1,1) Lie algebra

    Get PDF
    The ladder operator formalism of a general quantum state for su(1,1) Lie algebra is obtained. The state bears the generally deformed oscillator algebraic structure. It is found that the Perelomov's coherent state is a su(1,1) nonlinear coherent state. The expansion and the exponential form of the nonlinear coherent state are given. We obtain the matrix elements of the su(1,1) displacement operator in terms of the hypergeometric functions and the expansions of the displaced number states and Laguerre polynomial states are followed. Finally some interesting su(1,1) optical systems are discussed.Comment: 16 pages, no figures, accepted by Int. J. Mod. Phy.

    Semileptonic decays of BcB_c meson to S-wave charmonium states in the perturbative QCD approach

    Get PDF
    Inspired by the recent measurement of the ratio of BcB_c branching fractions to J/ψπ+J/\psi \pi^+ and J/ψμ+νμJ/\psi \mu^+\nu_{\mu} final states at the LHCb detector, we study the semileptonic decays of BcB_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions Bc→P,VB_c\rightarrow P,V, where PP and VV denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for BcB_c meson. It is found that the predicted branching ratios range from 10−610^{-6} up to 10−210^{-2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions BR(Bc+→J/Ψπ+)BR(Bc+→J/Ψμ+νμ)\frac{\mathcal {BR}(B_c^+\rightarrow J/\Psi \pi^+)}{\mathcal {BR}(B_c^+\rightarrow J/\Psi \mu^+\nu_{\mu})} is in good agreement with the data. For Bc→VlνlB_c\rightarrow V l \nu_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments.Comment: 12 pages, 3 figures, 5 table

    Entangled SU(2) and SU(1,1) coherent states

    Get PDF
    Entangled SU(2) and SU(1,1) coherent states are developed as superpositions of multiparticle SU(2) and SU(1,1) coherent states. In certain cases, these are coherent states with respect to generalized su(2) and su(1,1) generators, and multiparticle parity states arise as a special case. As a special example of entangled SU(2) coherent states, entangled binomial states are introduced and these entangled binomial states enable the contraction from entangled SU(2) coherent states to entangled harmonic oscillator coherent states. Entangled SU(2) coherent states are discussed in the context of pairs of qubits. We also introduce the entangled negative binomial states and entangled squeezed states as examples of entangled SU(1,1) coherent states. A method for generating the entangled SU(2) and SU(1,1) coherent states is discussed and degrees of entanglement calculated. Two types of SU(1,1) coherent states are discussed in each case: Perelomov coherent states and Barut-Girardello coherent states.Comment: 31 pages, no figure
    • …
    corecore