12,119 research outputs found
The progenitors of Type Ia supernovae with long delay times
The nature of the progenitors of Type Ia supernovae (SNe Ia) is still
unclear. In this paper, by considering the effect of the instability of
accretion disk on the evolution of white dwarf (WD) binaries, we performed
binary evolution calculations for about 2400 close WD binaries, in which a
carbon--oxygen WD accretes material from a main-sequence star or a slightly
evolved subgiant star (WD + MS channel), or a red-giant star (WD + RG channel)
to increase its mass to the Chandrasekhar (Ch) mass limit. According to these
calculations, we mapped out the initial parameters for SNe Ia in the orbital
period--secondary mass () plane for various WD
masses for these two channels, respectively. We confirm that WDs in the WD + MS
channel with a mass as low as can accrete efficiently and reach
the Ch limit, while the lowest WD mass for the WD + RG channel is . We have implemented these results in a binary population synthesis
study to obtain the SN Ia birthrates and the evolution of SN Ia birthrates with
time for both a constant star formation rate and a single starburst. We find
that the Galactic SN Ia birthrate from the WD + MS channel is according to our standard model, which is higher than
previous results. However, similar to previous studies, the birthrate from the
WD + RG channel is still low (). We also
find that about one third of SNe Ia from the WD + MS channel and all SNe Ia
from the WD + RG channel can contribute to the old populations (\ga1 Gyr) of
SN Ia progenitors.Comment: 11 pages, 9 figures, 1 table, accepted for publication in MNRA
Deconfinement Phase Transition Heating and Thermal Evolution of Neutron Stars
The deconfinement phase transition will lead to the release of latent heat
during spins down of neutron stars if the transition is the first-order one.We
have investigated the thermal evolution of neutron stars undergoing such
deconfinement phase transition. The results show that neutron stars may be
heated to higher temperature.This feature could be particularly interesting for
high temperature of low-magnetic field millisecond pulsar at late stage.Comment: 4 pages, to be published by American Institute of Physics, ed. D.Lai,
X.D.Li and Y.F.Yuan, as the Proceedings of the conference Astrophysics of
Compact Object
Research on forming quality of poly-wedge pulley spinning
As an important power transmission part, pulleys are widely used in automobile industry, agricultural machinery, pumps and machines. A near-net forming process for six-wedge belt pulleys manufacturing was put forward. For this purpose, the required tooth shape and size can be formed directly by spinning without machining. The whole manufacturing procedures include blanking, drawing and spinning. The spinning procedure includes five processes, performing, drumming, thickening, toothing and finishing. The forming defects occurred during each forming processes of poly-wedge pulley spinning, such as the drumming failure, flanged opening-end, folded side-wall, insufficient bottom size, flashed opening-end, cutting-off bottom, are introduced, and the factors influencing the defects are analyzed. The corresponding preventive measures are put forward
- β¦