6,044 research outputs found

    Preserving Node-level Privacy in Graph Neural Networks

    Full text link
    Differential privacy (DP) has seen immense applications in learning on tabular, image, and sequential data where instance-level privacy is concerned. In learning on graphs, contrastingly, works on node-level privacy are highly sparse. Challenges arise as existing DP protocols hardly apply to the message-passing mechanism in Graph Neural Networks (GNNs). In this study, we propose a solution that specifically addresses the issue of node-level privacy. Our protocol consists of two main components: 1) a sampling routine called HeterPoisson, which employs a specialized node sampling strategy and a series of tailored operations to generate a batch of sub-graphs with desired properties, and 2) a randomization routine that utilizes symmetric multivariate Laplace (SML) noise instead of the commonly used Gaussian noise. Our privacy accounting shows this particular combination provides a non-trivial privacy guarantee. In addition, our protocol enables GNN learning with good performance, as demonstrated by experiments on five real-world datasets; compared with existing baselines, our method shows significant advantages, especially in the high privacy regime. Experimentally, we also 1) perform membership inference attacks against our protocol and 2) apply privacy audit techniques to confirm our protocol's privacy integrity. In the sequel, we present a study on a seemingly appealing approach \cite{sajadmanesh2023gap} (USENIX'23) that protects node-level privacy via differentially private node/instance embeddings. Unfortunately, such work has fundamental privacy flaws, which are identified through a thorough case study. More importantly, we prove an impossibility result of achieving both (strong) privacy and (acceptable) utility through private instance embedding. The implication is that such an approach has intrinsic utility barriers when enforcing differential privacy

    Practical Differentially Private and Byzantine-resilient Federated Learning

    Full text link
    Privacy and Byzantine resilience are two indispensable requirements for a federated learning (FL) system. Although there have been extensive studies on privacy and Byzantine security in their own track, solutions that consider both remain sparse. This is due to difficulties in reconciling privacy-preserving and Byzantine-resilient algorithms. In this work, we propose a solution to such a two-fold issue. We use our version of differentially private stochastic gradient descent (DP-SGD) algorithm to preserve privacy and then apply our Byzantine-resilient algorithms. We note that while existing works follow this general approach, an in-depth analysis on the interplay between DP and Byzantine resilience has been ignored, leading to unsatisfactory performance. Specifically, for the random noise introduced by DP, previous works strive to reduce its impact on the Byzantine aggregation. In contrast, we leverage the random noise to construct an aggregation that effectively rejects many existing Byzantine attacks. We provide both theoretical proof and empirical experiments to show our protocol is effective: retaining high accuracy while preserving the DP guarantee and Byzantine resilience. Compared with the previous work, our protocol 1) achieves significantly higher accuracy even in a high privacy regime; 2) works well even when up to 90% of distributive workers are Byzantine

    Ambient Sound Helps: Audiovisual Crowd Counting in Extreme Conditions

    Get PDF
    Visual crowd counting has been recently studied as a way to enable people counting in crowd scenes from images. Albeit successful, vision-based crowd counting approaches could fail to capture informative features in extreme conditions, e.g., imaging at night and occlusion. In this work, we introduce a novel task of audiovisual crowd counting, in which visual and auditory information are integrated for counting purposes. We collect a large-scale benchmark, named auDiovISual Crowd cOunting (DISCO) dataset, consisting of 1,935 images and the corresponding audio clips, and 170,270 annotated instances. In order to fuse the two modalities, we make use of a linear feature-wise fusion module that carries out an affine transformation on visual and auditory features. Finally, we conduct extensive experiments using the proposed dataset and approach. Experimental results show that introducing auditory information can benefit crowd counting under different illumination, noise, and occlusion conditions. The dataset and code will be released. Code and data have been made availabl

    Denoising Diffusion Autoencoders are Unified Self-supervised Learners

    Full text link
    Inspired by recent advances in diffusion models, which are reminiscent of denoising autoencoders, we investigate whether they can acquire discriminative representations for classification via generative pre-training. This paper shows that the networks in diffusion models, namely denoising diffusion autoencoders (DDAE), are unified self-supervised learners: by pre-training on unconditional image generation, DDAE has already learned strongly linear-separable representations within its intermediate layers without auxiliary encoders, thus making diffusion pre-training emerge as a general approach for generative-and-discriminative dual learning. To validate this, we conduct linear probe and fine-tuning evaluations. Our diffusion-based approach achieves 95.9% and 50.0% linear evaluation accuracies on CIFAR-10 and Tiny-ImageNet, respectively, and is comparable to contrastive learning and masked autoencoders for the first time. Transfer learning from ImageNet also confirms the suitability of DDAE for Vision Transformers, suggesting the potential to scale DDAEs as unified foundation models. Code is available at github.com/FutureXiang/ddae.Comment: ICCV 2023 Ora

    Performance of Spatial Modulation using Measured Real-World Channels

    Full text link
    In this paper, for the first time real-world channel measurements are used to analyse the performance of spatial modulation (SM), where a full analysis of the average bit error rate performance (ABER) of SM using measured urban correlated and uncorrelated Rayleigh fading channels is provided. The channel measurements are taken from an outdoor urban multiple input multiple output (MIMO) measurement campaign. Moreover, ABER performance results using simulated Rayleigh fading channels are provided and compared with a derived analytical bound for the ABER of SM, and the ABER results for SM using the measured urban channels. The ABER results using the measured urban channels validate the derived analytical bound and the ABER results using the simulated channels. Finally, the ABER of SM is compared with the performance of spatial multiplexing (SMX) using the measured urban channels for small and large scale MIMO. It is shown that SM offers nearly the same or a slightly better performance than SMX for small scale MIMO. However, SM offers large reduction in ABER for large scale MIMO.Comment: IEEE Vehicular Technology Conference Fall 2013 (VTC-Fall 2013), Accepte
    • …
    corecore