106,216 research outputs found
Tectonic interpretation of the connectivity of a multiscale fracture system in limestone
This paper studies the statistics and tectonism of a multiscale natural fracture system in limestone. The fracture network exhibits a selfâsimilar characteristic with a correlation between its power law length exponent a and fractal dimension D, i.e., aâââDâ+â1. Contradicting the scaleâinvariant connectivity of idealized selfâsimilar systems, the percolation state of trace patterns mapped at different scales and localities of the study area varies significantly, from well to poorly connected. A tectonic interpretation based on a polyphase fracture network evolution history is proposed to explain this discrepancy. We present data to suggest that the driving force for fracture formation may be dissipated at the end of a tectonic event when the system becomes connected. However, the âeffectiveâ connectivity can successively be reduced by cementation of early fractures and reestablished by subsequent cracking, rendering a variable âapparentâ connectivity that can be significantly above the percolation threshold.ISSN:0094-8276ISSN:1944-800
Comment on "General nonlocality in quantum fields"
In this paper, we first incorporate the weak interaction into the theory of
General Nonlocality by finding a appropriate metric for it. Accordingly, we
suggest the theoretical frame of General Nonlocality as the candidate theory of
unifying three microscope interactions in low energy limit. In this unifying
scenario, the essential role of photon field is stressed.Comment: Only partial content published in the following reference. The part
asserting the fermion mass problem now proved to be wrong, though remains in
the versio
Influences of magnetic coupling process on the spectrum of a disk covered by the corona
Recently, much attention has been paid to the magnetic coupling (MC) process,
which is supported by very high emissivity indexes observed in Seyfert 1 galaxy
MCG-6-30-15 and GBHC XTE J1650-500. But the rotational energy transferred from
a black hole is simply assumed to be radiated away from the surrounding
accretion disk in black-body spectrum, which is obviously not consistent with
the observed hard power-law X-ray spectra. We intend to introduce corona into
the MC model to make it more compatible with the observations. We describe the
model and the procedure of a simplified Monte Carlo simulation, compare the
output spectra in the cases with and without the MC effects, and discuss the
influences of three parameters involved in the MC process on the output
spectra. It is shown that the MC process augments radiation fluxes in the UV or
X-ray band. The emergent spectrum is affected by the BH spin and magnetic field
strength at the BH horizon, while it is almost unaffected by the radial profile
of the magnetic field at the disk. Introducing corona into the MC model will
improve the fitting of the output spectra from AGNs and GBHCs.Comment: 15 pages, 5 figures, accepted by A&
Incomplete Information based Collaborative Computing in Emergency Communication Networks
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Due to the urgent and unpredictable nature of disaster relief, emergency management systems (EMS) faces an enormous challenge of real-time data analysis without the complete information from emergency communication networks (ECNs). In this letter, we propose an incomplete information based twotier game model (IITG) to realize collaborative computing at the edge of ECNs, which incentivizes idle computing devices (ICDs) to share computation resources through maximizing utilities of EMS and ICDs. Furthermore, we develop a near-optimal IITG algorithm (N-IITG) to seek the unique Bayesian Nash equilibrium. Simulation results reveal that N-IITG outperforms the existing incomplete information based methods in terms of computation latency and participants utilities
Macroscopical Entangled Coherent State Generator in V configuration atom system
In this paper, we propose a scheme to produce pure and macroscopical
entangled coherent state. When a three-level ''V'' configuration atom interacts
with a doubly reasonant cavity, under the strong classical driven condition,
entangled coherent state can be generated from vacuum fields. An analytical
solution for this system under the presence of cavity losses is also given
- âŠ