138 research outputs found
Recommended from our members
Guided-mode-resonance-coupled plasmonic-active SiOâ‚‚ nanotubes for surface enhanced Raman spectroscopy
We demonstrate a surface enhanced Raman scattering (SERS) substrate by integrating plasmonic-active SiO₂ nanotubes into Si₃N₄ gratings. First, the dielectric grating that is working under guided mode resonance (GMR) provides enhanced electric field for localized surface plasmon polaritons on the surface of metallic nanoparticles. Second, we use SiO₂ nanotubes with densely assembled silver nanoparticles to provide a large amount of "hot spots" without significantly damping the GMR mode of the grating. Experimental measurement on Rhodamine-6G shows a constant enhancement factor of 8 ~ 10 in addition to the existing SERS effect across the entire surface of the SiO₂ nanotubes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714710]Keywords: Silver Electrode, Single Molecule, Scattering, SER
MTHFR C677T and MTR A2756G polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in hypertensive Chinese adults
<p>Abstract</p> <p>Background</p> <p>This study aimed to investigate if the homocysteine-lowering efficacy of two commonly used physiological doses (0.4 mg/d and 0.8 mg/d) of folic acid (FA) can be modified by individual methylenetetrahydrofolate reductase (MTHFR) C677T and/or methionine synthase (MTR) A2756G polymorphisms in hypertensive Chinese adults.</p> <p>Methods</p> <p>A total of 480 subjects with mild or moderate essential hypertension were randomly assigned to three treatment groups: 1) enalapril only (10 mg, control group); 2) enalapril-FA tablet [10:0.4 mg (10 mg enalapril combined with 0.4 mg of FA), low FA group]; and 3) enalapril-FA tablet (10:0.8 mg, high FA group), once daily for 8 weeks.</p> <p>Results</p> <p>After 4 or 8 weeks of treatment, homocysteine concentrations were reduced across all genotypes and FA dosage groups, except in subjects with MTR 2756AG /GG genotype in the low FA group at week 4. However, compared to subjects with MTHFR 677CC genotype, homocysteine concentrations remained higher in subjects with CT or TT genotype in the low FA group (<it>P </it>< 0.05 for either of these genotypes) and TT genotype in the high FA group (<it>P </it>< 0.05). Furthermore, subjects with TT genotype showed a greater homocysteine-lowering response than did subjects with CC genotype in the high FA group (mean percent reduction of homocysteine at week 8: CC 10.8% vs. TT: 22.0%, <it>P </it>= 0.005), but not in the low FA group (CC 9.9% vs. TT 11.2%, <it>P </it>= 0.989).</p> <p>Conclusions</p> <p>This study demonstrated that MTHFR C677T polymorphism can not only affect homocysteine concentration at baseline and post-FA treatment, but also can modify therapeutic responses to various dosages of FA supplementation.</p
Transcriptional and Post-Transcriptional Mechanisms for Oncogenic Overexpression of Ether À Go-Go K+ Channel
The human ether-à -go-go-1 (h-eag1) K+ channel is expressed in a variety of cell lines derived from human malignant tumors and in clinical samples of several different cancers, but is otherwise absent in normal tissues. It was found to be necessary for cell cycle progression and tumorigenesis. Specific inhibition of h-eag1 expression leads to inhibition of tumor cell proliferation. We report here that h-eag1 expression is controlled by the p53−miR-34−E2F1 pathway through a negative feed-forward mechanism. We first established E2F1 as a transactivator of h-eag1 gene through characterizing its promoter region. We then revealed that miR-34, a known transcriptional target of p53, is an important negative regulator of h-eag1 through dual mechanisms by directly repressing h-eag1 at the post-transcriptional level and indirectly silencing h-eag1 at the transcriptional level via repressing E2F1. There is a strong inverse relationship between the expression levels of miR-34 and h-eag1 protein. H-eag1antisense antagonized the growth-stimulating effects and the upregulation of h-eag1 expression in SHSY5Y cells, induced by knockdown of miR-34, E2F1 overexpression, or inhibition of p53 activity. Therefore, p53 negatively regulates h-eag1 expression by a negative feed-forward mechanism through the p53−miR-34−E2F1 pathway. Inactivation of p53 activity, as is the case in many cancers, can thus cause oncogenic overexpression of h-eag1 by relieving the negative feed-forward regulation. These findings not only help us understand the molecular mechanisms for oncogenic overexpression of h-eag1 in tumorigenesis but also uncover the cell-cycle regulation through the p53−miR-34−E2F1−h-eag1 pathway. Moreover, these findings place h-eag1 in the p53−miR-34−E2F1−h-eag1 pathway with h-eag as a terminal effecter component and with miR-34 (and E2F1) as a linker between p53 and h-eag1. Our study therefore fills the gap between p53 pathway and its cellular function mediated by h-eag1
- …