4,894 research outputs found

    The influence of a single defect in composite gate insulators on the performance of nanotube transistors

    Full text link
    The current through a carbon nanotube field-effect transistor (CNFET) with cylindrical gate electrode is calculated using the nonequilibrium Greens function method in a tight-binding approximation. The obtained result is in good agreement with the experimental data. The space radiation and nuclear radiation are known to cause defects in solids. The theoretical approach is used to calculate the amplitude of the random-telegraph-signal (RTS) noise due to a single defect in the gate oxide of a long channel p-type CNFET. We investigate how the amplitude of the RTS noise is affected by the composite structure of gate insulators, which contains an inner insulator with a dielectric constant larger than 3.9 and an outer insulator with a dielectric constant of 3.9 (as for SiO2). It is found that the RTS amplitude increases apparently with the decreasing thickness of the inner gate insulator. If the inner insulator is too thin, even though its dielectric constant is as large as 80, the amplitude of the RTS noise caused by the charge of Q = +1e may amount to around 80% in the turn-on region. Due to strong effects of defects in CNFETs, CNFETs have a potential to be used for detecting the space radiation or nuclear radiation.Comment: 8 Figure

    Interacting heavy fermions in a disordered optical lattice

    Full text link
    We have theoretically studied the effect of disorder on ultracold alkaline-earth atoms governed by the Kondo lattice model in an optical lattice via simplified double-well model and hybridization mean-field theory. Disorder-induced narrowing and even complete closure of hybridization gap have been predicted and the compressibility of the system has also been investigated for metallic and Kondo insulator phases in the presence of the disordered potential. To make connection to the experimental situation, we have numerically solved the disordered Kondo lattice model with an external harmonic trap and shown both the melting of Kondo insulator plateau and an compressibility anomaly at low-density

    Praseodymium(III) sulfate hydroxide, Pr(SO4)(OH)

    Get PDF
    The title compound, Pr(SO4)(OH), obtained under hydro­thermal conditions, consists of PrIII ions coordinated by nine O atoms from six sulfate groups and three hydroxide anions. The bridging mode of the O atoms results in the formation of a three-dimensional framework, stabilized by two O—H⋯O hydrogen-bonding inter­actions

    Cyclotron Dynamics of a Kondo Singlet in a Spin-Orbit-Coupled Alkaline-Earth Atomic Gas

    Full text link
    We propose a scheme to investigate the interplay between Kondo-exchange interaction and quantum spin Hall effect with ultracold fermionic alkaline-earth atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, though the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling

    Benzyl­aminium perchlorate–18-crown-6 (1/1)

    Get PDF
    In the title compound, C7H10N+·ClO4 −·C20H24O6, the proton­ated benzyl­amine cation forms a rotator–stator complex with the 18-crown-6 (1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne) mol­ecule via N—H⋯O hydrogen bonds. The cations are associated via weak C—H⋯π inter­actions, forming chains parallel to [011], while the perclorate anions are located between these chains

    High Temperature Corrosion Behaviors of the Superheater Materials

    Get PDF
    AbstractThe high temperature corrosion tests are performed on 20#steel, TP347H and superalloy C22. The high temperature corrosion behaviors of these superheater materials in the synthetic salt containing 80wt-%KCl+20wt-%K2SO4 have been investigated under the oxidizing atmosphere at a temperature of 650°C for 218hours. For comparison, the column diagram has been obtained by mass loss. The scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) is used to characterize the surface morphology and compositions of the corrosion products. The results have shown that the superalloy C22 exhibits the high corrosion resistance
    corecore