10,106 research outputs found

    Integrating static and dynamic information for routing traffic

    Get PDF
    The efficiency of traffic routing on complex networks can be reflected by two key measurements i.e. the system capacity and the average data packets travel time. In this paper, we propose a mixing routing strategy by integrating local static and dynamic information for enhancing the efficiency of traffic on scale-free networks. The strategy is governed by a single parameter. Simulation results show that there exists a optimal parameter value by considering both maximizing the network capacity and reducing the packet travel time. Comparing with the strategy by adopting exclusive local static information, the new strategy shows its advantages in improving the efficiency of the system. The detailed analysis of the mixing strategy is provided. This work suggests that how to effectively utilize the larger degree nodes plays the key role in the scale-free traffic systems.Comment: 5 pages, 5 figure

    Implementing topological quantum manipulation with superconducting circuits

    Full text link
    A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capacitively coupled chains of superconducting devices. In particular, we elaborate how to achieve the wanted operations to create and manipulate the topological quantum states, providing an experimentally feasible scenario to access the topological memory and to build the anyonic interferometry.Comment: 4 pages with 3 figures; V2: published version with minor updation

    Numerical Jordan-Wigner approach for two dimensional spin systems

    Full text link
    We present a numerical self consistent variational approach based on the Jordan-Wigner transformation for two dimensional spin systems. We apply it to the study of the well known quantum (S=1/2) antiferromagnetic XXZ system as a function of the easy-axis anisotropy \Delta on a periodic square lattice. For the SU(2) case the method converges to a N\'eel ordered ground state irrespectively of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations like frustrated or disordered systems.Comment: Revtex, 8 pages, 4 figure

    Microscopic inspection and tracking of single upconversion nanoparticles in living cells

    Full text link
    © 2018 The Author(s). Nanoparticles have become new tools for cell biology imaging, sub-cellular sensing, super-resolution imaging, and drug delivery. Long-term 3D tracking of nanoparticles and their intracellular motions have advanced the understanding of endocytosis and exocytosis as well as of active transport processes. The sophisticated operation of correlative optical-electron microscopy and scientific-grade cameras is often used to study intercellular processes. Nonetheless, most of these studies are still limited by the insufficient sensitivity for separating a single nanoparticle from a cluster of nanoparticles or their aggregates8. Here we report that our eyes can track a single fluorescent nanoparticle that emits over 4000 photons per 100 milliseconds under a simple microscope setup. By tracking a single nanoparticle with high temporal, spectral and spatial resolution, we show the measurement of the local viscosity of the intracellular environment. Moreover, beyond the colour domain and 3D position, we introduce excitation power density as the fifth dimension for our eyes to simultaneously discriminate multiple sets of single nanoparticles

    Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells

    Get PDF
    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25+ NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25+ NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy

    Thermodynamic Geometry of black hole in the deformed Horava-Lifshitz gravity

    Full text link
    We investigate the thermodynamic geometry and phase transition of Kehagias-Sfetsos black hole in the deformed Horava-Lifshitz gravity with coupling constant λ=1\lambda=1. The phase transition in black hole thermodynamics is thought to be associated with the divergence of the capacities. And the structures of these divergent points are studied. We also find that the thermodynamic curvature produced by the Ruppeiner metric is positive definite for all r+>r−r_+ > r_- and is divergence at η2=0\eta_2=0 corresponded to the divergent points of CΦC_{\Phi} and CTC_T. These results suggest that the microstructure of the black hole has an effective repulsive interaction, which is very similar to the ideal gas of fermions. These may shine some light on the microstructure of the black hole.Comment: 5 pages, 3 figure
    • …
    corecore