23,028 research outputs found

    Regularized Principal Component Analysis for Spatial Data

    Full text link
    In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at pp locations and nn time points with the possibility that p>np>n. While principal component analysis (PCA) is commonly applied to find the dominant patterns, the eigenimages produced from PCA may exhibit patterns that are too noisy to be physically meaningful when pp is large relative to nn. To obtain more precise estimates of eigenimages, we propose a regularization approach incorporating smoothness and sparseness of eigenimages, while accounting for their orthogonality. Our method allows data taken at irregularly spaced or sparse locations. In addition, the resulting optimization problem can be solved using the alternating direction method of multipliers, which is easy to implement, and applicable to a large spatial dataset. Furthermore, the estimated eigenfunctions provide a natural basis for representing the underlying spatial process in a spatial random-effects model, from which spatial covariance function estimation and spatial prediction can be efficiently performed using a regularized fixed-rank kriging method. Finally, the effectiveness of the proposed method is demonstrated by several numerical example

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Control efficacy of complex networks

    Get PDF
    Acknowledgements W.-X.W. was supported by CNNSF under Grant No. 61573064, and No. 61074116 the Fundamental Research Funds for the Central Universities and Beijing Nova Programme, China. Y.-C.L. was supported by ARO under Grant W911NF-14-1-0504.Peer reviewedPublisher PD
    • …
    corecore