8 research outputs found

    Topology optimization of differentiable microstructures

    No full text
    Recent years have seen a growing interest in topology optimization of functionally graded microstructures, characterized by an array of microstructures with varying volume fractions. However, microstructures optimized at slightly different volume fractions do not necessarily connect well when placed adjacently. Furthermore, optimization is commonly performed on a finite set of volume fractions, limiting the number of microstructure configurations. In this paper, we introduce the concept of differentiable microstructures, which are parameterized microstructures that exhibit continuous variations in both geometry and mechanical properties. To construct such microstructures, we propose a novel formulation for topology optimization. In this approach, a series of 2-dimensional microstructures is represented using a height field, and the objective is to maximize the bulk modulus of the entire series. Through this optimization process, an initial microstructure with a small volume fraction undergoes non-uniform transformations, generating a series of microstructures with progressively increasing volume fractions. Notably, when compared to traditional uniform morphing methods, our proposed optimization approach yields a series of microstructures with bulk moduli that closely approach the theoretical limit.Materials and Manufacturin

    Support-Free Hollowing

    No full text
    Offsetting-based hollowing is a solid modeling operation widely used in 3D printing, which can change the model's physical properties and reduce the weight by generating voids inside a model. However, a hollowing operation can lead to additional supporting structures for fabrication in interior voids, which cannot be removed. As a consequence, the result of a hollowing operation is affected by these additional supporting structures when applying the operation to optimize physical properties of different models. This paper proposes a support-free hollowing framework to overcome the difficulty of fabricating voids inside a solid. The challenge of computing a support-free hollowing is decomposed into a sequence of shape optimization steps, which are repeatedly applied to interior mesh surfaces. The optimization of physical properties in different applications can be easily integrated into our framework. Comparing to prior approaches that can generate support-free inner structures, our hollowing operation can reduce more volume of material and thus provide a larger solution space for physical optimization. Experimental tests are taken on a number of 3D models to demonstrate the effectiveness of this framework.Accepted author manuscriptMaterials and Manufacturin

    Modulation of sediment load recovery downstream of Three Gorges Dam in the Yangtze River

    No full text
    The sediment load in the Yangtze River downstream of the Three Gorges Dam (TGD) has substantially declined in recent decades. The decrease is more profound below the TGD, e.g., a 97% decrease at Yichang, compared with that at the delta apex, 1200 km downstream, e.g., a 75% decrease, implying along-river sediment recovery. Two large river-connected lakes, i.e., Dongting and Poyang Lakes, may play a role in the re-establishment of the river’s morphodynamic equilibrium, but a quantitative data-based understanding of this interaction is not yet available. In this work, we collected a series of field data to quantify the sediment gain and loss in the river-lake system in the middle-lower Yangtze River, and evaluate the lake’s response to the reduction in riverine sediment supply. We find that Dongting Lake and Poyang Lake shifted from net sedimentation to erosion in 2006 and 2000, and back to a sedimentation regime again after 2017 and 2018, respectively. Natural morphodynamic adaptation and sand mining play an important role in the regime changes in the Dongting Lake whereas sand mining dominates the abrupt changes in the Poyang Lake. The Dongting and Poyang Lake contributed maximum by 38% (2015) and 17% (2006) (respectively) to the sediment recovery in the erosion regime, whereas the riverbed erosion dominates the main sediment source. These changes in the relative contribution of sediment sources also indicates a response time of ~ 20 years in the lakes towards a new equilibrium state. It is noteworthy that the lakes’ buffer effects may be overestimated as the supplied sediment from the lakes is rather small compared to the significant dam trapping in the upstream basin and sediment source from downstream degradation. The results imply that river management and restoration should take into account of the river-lake interactions and feedback impact at decadal time scales.Environmental Fluid Mechanic

    A historical review of sediment export–import shift in the North Branch of Changjiang Estuary

    No full text
    Net sediment transport is predominantly seaward in fluvial-dominated estuaries worldwide. However, a distributary branch in the Changjiang Estuary, the North Branch, undergoes net landward sediment transport, which leads to severe channel aggradation. Its controlling mechanism and the role of human activities remain insufficiently understood, although such knowledge is necessary for better management and restoration opportunities. In this study we revisit the centennial hydro-morphodynamic evolution of the North Branch based on historical maps, field data, and satellite images and provide a synthesis of the regime change from ebb to flood dominance. The North Branch was once a major river and ebb-dominant distributary channel. Within which alternative meandering channels and sand bars developed. Deposition of river-borne sediment leads to infilling of the branch, while tidal flat embankment reduces the bankfull width and modifies the channel configuration, resulting in a profound decline in the sub-tidal flow partition rate. The North Branch then becomes tide-dominant with an occurrence of tidal bores and elongated sand ridges. Once tidal dominance is established, extensive tidal flat reclamation enhances the funnel-shaped planform, amplifying the incoming tides and initiating a positive feedback process that links tidal flat loss, sediment import, and channel aggradation. Overall, the shift in branch dominance is a combined result of a natural southeastward realignment of the deltaic distributary channels and extensive reclamation. One management option to mitigate channel aggradation is to stop the aggressive reclamation and allow tidal flats to build up, which might reduce the sediment import and eventually lead to a morphodynamic equilibrium in the longer term. Understanding the impact of tidal flat reclamation is informative for the management of similar tidal systems under strong human interference.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Coastal Engineerin

    Changjiang Delta in the Anthropocene: Multi-scale hydro-morphodynamics and management challenges

    No full text
    The Changjiang Delta (CD) is one of well-studied large deltas of critical socio-economical and ecological importance regionally and global representativeness. Cumulated field data and numerical modeling has facilitated scientific understanding of its hydro-morphodynamics at multiple spatial and time scales, but the changing boundary forcing conditions and increasing anthropogenic influences pose management challenges requiring integrated knowledge. Here we provide a comprehensive synthesis of the multi-scale deltaic hydro-morphodynamics, discuss their relevance and management perspectives in a global context, and identify knowledge gaps for future study. The CD is classified as a river-tide mixed-energy, muddy and highly turbid, fluvio-deltaic composite system involving large-scale land-ocean interacted processes. Its hydro-morphodynamic evolution exhibits profound temporal variations at the fortnightly, seasonal, and inter-annual time scales, and strong spatial variability between tidal river and tidal estuary, and between different distributary channels. As the river-borne sediment has declined >70%, the deltaic morphodynamic adaptation lags behind sediment decline because sediment redistribution within the delta emerges to play a role in sustaining tidal flat accretion. However, the deltaic channels have become narrower, deepened and growingly constrained under cumulated human activities, e.g., extensive embankment and construction of jetties and groins, possibly initiating a decrease in morphodynamic activities and sediment trapping efficiency. Overall, the CD undergoes transitions from net sedimentation and naturally slow morphodynamic adaptation to erosion and human-driven radical adjustment. A shift in management priority from delta development to ecosystem conservation provides an opportunity for restoring the resilience to flooding and erosion hazards. The lessons and identified knowledge gaps inform study and management of worldwide estuaries and deltas undergoing intensified human interferences.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Coastal Engineerin

    Reclamation of Tidal Flats Within Tidal Basins Alters Centennial Morphodynamic Adaptation to Sea-Level Rise

    No full text
    Reclamation of low-lying tidal flats and floodplains adjacent to present shorelines has been implemented worldwide for both coastal defense and development. While it is technically feasible to monitor the short-term impact of tidal flat embankments, it is challenging to identify long-term and cumulative morphodynamic impact, particularly considering centennial sea-level rise (SLR). In this study, we construct a process-based hydro-morphodynamic model for a schematized tidal basin and examine its morphodynamic evolution under the combined influence of SLR and tidal flat embankments. We see that rising sea levels lead to inundation of low-lying floodplains just above high water, creating new intertidal flats that mitigate the drowning impact of SLR. This mitigation effect is lost if the low-lying floodplains and tidal flats are reclaimed, preventing any shoreline migration under SLR. Removing a large portion of intertidal flats within the tidal basin induces significant changes in basin hypsometry and potentially, a reversal of flood/ebb dominance. The resulting hydro-morphodynamic impact of large-scale tidal flat embankment is more significant than SLR at a centennial time scale. This suggests a need for much greater management awareness regarding the cumulative impact of human activities. These findings imply that allowing lateral shoreline migration under SLR sustains tidal basin's inherent morphodynamic buffering capacity, whereas reclaiming tidal flats significantly alters hydro-morphodynamic adaptation at the decadal to centennial time scales. It highlights the importance of conserving low-lying floodplains and tidal flats in tide-dominated systems to counteract the drowning impact of SLR.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Coastal Engineerin

    Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession

    No full text
    The succession of microbial community structure and function is a central ecological topic; however, the mechanisms that underlie community assembly and promote temporal succession remain unclear. We studied microbial community-associated functional dynamics in a well-established secondary successional chronosequence that spans approximately 160 years of ecosystem development on the Loess Plateau of China, by sequencing both 16S and ITS rRNA genes and soil metagenomes, resulting in a total of 132.5 Gb of data. Notably, both bacterial and fungal communities shifted with succession, but the microbial community changed little from the pioneer forest stage (approximately 110 years) to the latter successional forest stage. Fungi showed higher variability with succession than bacteria, and the shift of both the bacterial and fungal communities was related more to the soil characteristics than to the litter characteristics. Shifts in soil microbial functions were associated with microbial phylogenetic changes, but microbial gene function also showed changes in the absence of phylogenetic changes at the late successional stages. The reduction in microbial C cycle genes was related to a decrease in litter decomposition ability, thus resulting in a steady state of nutrient cycle in the ecosystem. In addition, high microbial respiration in nutrient-rich soil does not necessarily indicate high microbial decomposition functions; the latter also depend on the abundance of related genes, on enzyme activity and on the physicochemical properties of the litter. Our study provides a metagenome profile of a successional chronosequence and provides insight into the mechanisms underlying the soil microbe-driven functional changes in nutrient cycles during succession

    Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery

    No full text
    The litter decomposition, nutrient patterns, as well as nutrient release and soil nutrient contents were determined in response to nitrogen (N) and phosphorus (P) addition and drought treatments following long-term vegetation recovery. The litter decomposition rate decreased with vegetation recovery, due to changes in litter quality, soil nutrient availability, and soil enzyme activity. Nitrogen addition promoted litter decomposition in the early recovery stages but inhibited decomposition in the later stages, indicating a shift in the nutrient limitations to litter decomposition with succession. Neither N nor P addition had any effect on the release of litter carbon (C), whereas N addition inhibited litter N release. In addition, drought decreased litter decomposition and nutrient release during the vegetation recovery process. Our findings suggest that litter quality, soil nutrient availability, and moisture at different vegetation recovery stages should be considered when modeling the C cycle and nutrient dynamics in these ecosystems
    corecore