127 research outputs found

    Salinity stress results in ammonium and nitrite accumulation during the elemental sulfur-driven autotrophic denitrification process

    Get PDF
    In this study, we investigated the effects of salinity on elemental sulfur-driven autotrophic denitrification (SAD) efficiency, and microbial communities. The results revealed that when the salinity was ≤6 g/L, the nitrate removal efficiency in SAD increased with the increasing salinity reaching 95.53% at 6 g/L salinity. Above this salt concentration, the performance of SAD gradually decreased, and the nitrate removal efficiency decreased to 33.63% at 25 g/L salinity. Approximately 5 mg/L of the hazardous nitrite was detectable at 15 g/L salinity, but decreased at 25 g/L salinity, accompanied by the generation of ammonium. When the salinity was ≥15 g/L, the abundance of the salt-tolerant microorganisms, Thiobacillus and Sulfurimonas, increased, while that of other microbial species decreased. This study provides support for the practical application of elemental sulfur-driven autotrophic denitrification in saline nitrate wastewater

    Versatile gold-silver-PB nanojujubes for multi-modal detection and photo-responsive elimination against bacteria

    Get PDF
    Bacterial infections have become a serious threat to global public health. Nanomaterials have shown promise in the development of bacterial biosensing and antibiotic-free antibacterial modalities, but single-component materials are often less functional and difficult to achieve dual bacterial detection and killing. Herein, we report a novel strategy based on the effective integration of multi-modal bacterial detection and elimination, by constructing the versatile gold-silver-Prussian blue nanojujubes (GSP NJs) via a facile template etching method. Such incorporation of multi-components involves the utilization of cores of gold nanobipyramids with strong surface-enhanced Raman scattering (SERS) activity, the shells of Prussian blue as both an efficient bio-silent SERS label and an active peroxidase-mimic, and functionalization of polyvinyl pyrrolidone and vancomycin, respectively endowing them with good colloidal dispersibility and specificity against S. aureus. The GSP NJs show operational convenience in the SERS detection and excellent peroxidase-like activity for the sensitive colorimetric detection. Meanwhile, they exhibit robust near-infrared photothermal/photodynamic effects, and the photo-promoted Ag+ ions release, ultimately achieving a high antibacterial efficiency over 99.9% in 5 min. The NJs can also effectively eliminate complex biofilms. The work provides new insights into the design of multifunctional core-shell nanostructures for the integrated bacterial detection and therapy

    A Retrospective Review of Microbiological Methods Applied in Studies Following the Deepwater Horizon Oil Spill

    No full text
    The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in 2010 resulted in serious damage to local marine and coastal environments. In addition to the physical removal and chemical dispersion of spilled oil, biodegradation by indigenous microorganisms was regarded as the most effective way for cleaning up residual oil. Different microbiological methods were applied to investigate the changes and responses of bacterial communities after the DWH oil spills. By summarizing and analyzing these microbiological methods, giving recommendations and proposing some methods that have not been used, this review aims to provide constructive guidelines for microbiological studies after environmental disasters, especially those involving organic pollutants

    Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    No full text
    Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents) consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery

    An Active Pointing Compensator for Large Beam Waveguide Antenna Under Wind Disturbance

    No full text

    Conversion of Glucose into HMF Catalyzed by CPL-LiCl Investigated using Dual-Wavelength UV Spectrophotometry

    No full text
    The process of dehydration of glucose to 5-hydroxymethylfurfural (HMF), using caprolactam-lithium chloride (CPL/LiCl) as a solvent, was investigated. Dual-wavelength ultraviolet spectrophotometry provides a new approach for the determination of glucose conversion rate and yield of HMF. Experiments were performed to demonstrate the accuracy and precision of this method. Various reaction parameters, such as the ratio of ionic liquid, reaction temperature, reaction time, catalyst dosage, and solid absorbent, were investigated in detail for the dehydration of glucose. The optimal conditions were explored. Finally, a possible mechanism for the dehydration of fructose to HMF was proposed

    Amine-Functionalized Sugarcane Bagasse: A Renewable Catalyst for Efficient Continuous Flow Knoevenagel Condensation Reaction at Room Temperature

    No full text
    A biomass-based catalyst with amine groups (–NH2), viz., amine-functionalized sugarcane bagasse (SCB-NH2), was prepared through the amination of sugarcane bagasse (SCB) in a two-step process. The physicochemical properties of the catalyst were characterized through FT-IR, elemental analysis, XRD, TG, and SEM-EDX techniques, which confirmed the –NH2 group was grafted onto SCB successfully. The catalytic performance of SCB-NH2 in Knoevenagel condensation reaction was tested in the batch and continuous flow reactions. Significantly, it was found that the catalytic performance of SCB-NH2 is better in flow system than that in batch system. Moreover, the SCB-NH2 presented an excellent catalytic activity and stability at the high flow rate. When the flow rate is at the 1.5 mL/min, no obvious deactivation was observed and the product yield and selectivity are more than 97% and 99% after 80 h of continuous reaction time, respectively. After the recovery of solvent from the resulting solution, a white solid was obtained as a target product. As a result, the SCB-NH2 is a promising catalyst for the synthesis of fine chemicals by Knoevenagel condensation reaction in large scale, and the modification of the renewable SCB with –NH2 group is a potential avenue for the preparation of amine-functionalized catalytic materials in industry

    Absorbable Organic Halide (AOX) Reduction in Elemental Chlorine-Free (ECF) Bleaching of Bagasse Pulp from the Addition of Sodium Sulphide

    No full text
    A laboratory investigation was developed to confirm and to quantify the reductions in absorbable organic halide (AOX) discharge when sodium sulphide was added during elemental chlorine-free (ECF) bleaching of sugarcane bagasse pulp. After the chlorine dioxide bleaching stage, the pulp was sent directly into the extraction stage without washing. FTIR was employed to determine the breakage of chemical bonds in the pulp, and GC-MS was used to measure the composition of the bleaching effluent. The addition of sodium sulphide caused a reduction in AOX of up to 46.7%. The AOX reduction reached this maximum when the sodium sulphide was added 30 min after the start of the extraction stage and when the pH was higher than 12. FTIR spectroscopy showed that the phenolic lignin of the pulp was degraded by the sodium sulphide and that the syringyl lignin and C-O-C, C=O structure of the pulp holocellulose of the pulp was preserved during the extraction stage. The GC-MS showed that the chlorobenzene and chlorophenol contents decreased noticeably after the addition of sodium sulphide

    Improving the Reactivity of Sugarcane Bagasse Kraft Lignin by a Combination of Fractionation and Phenolation for Phenol–Formaldehyde Adhesive Applications

    No full text
    The low reactivity of lignin hinders its application as a phenol substitute in phenol–formaldehyde (PF) resin. Therefore, the combination of fractionation and phenolation was adopted to enhance the reactivity of lignin for preparing a phenol–formaldehyde resin adhesive. Sugarcane bagasse kraft lignin and its fractions were employed to replace 40 wt% of phenol to prepare a PF adhesive. The fractionation increased the reactivity of lignin, however the as-prepared lignin-based PF (LPF) hardly met its application requirements as an adhesive. Therefore, the phenolation of lignin under an acidic condition was adopted to further improve its reactivity. The phenolated lignin was characterized by FTIR, gel permeation chromatography, and NMR, indicating its active sites increased while its molecular weight decreased. The phenolated lignin was used to replace 40 wt% of phenol to prepare a PF adhesive (PLPF) which was further employed to prepare plywood. The results indicated that the combination of fractionation and phenolation effectively enhanced the reactivity of lignin, and eventually improved the properties of the PLPF and its corresponding plywood. The free formaldehyde content of PLPF decreased to 0.16%. The wet bonding strength of the as-prepared plywood increased to 1.36 MPa, while the emission of formaldehyde decreased to 0.31 mL/L
    • …
    corecore