95 research outputs found

    Systematic Weight Pruning of DNNs using Alternating Direction Method of Multipliers

    Full text link
    We present a systematic weight pruning framework of deep neural networks (DNNs) using the alternating direction method of multipliers (ADMM). We first formulate the weight pruning problem of DNNs as a constrained nonconvex optimization problem, and then adopt the ADMM framework for systematic weight pruning. We show that ADMM is highly suitable for weight pruning due to the computational efficiency it offers. We achieve a much higher compression ratio compared with prior work while maintaining the same test accuracy, together with a faster convergence rate. Our models are released at https://github.com/KaiqiZhang/admm-prunin

    Toward Extremely Low Bit and Lossless Accuracy in DNNs with Progressive ADMM

    Full text link
    Weight quantization is one of the most important techniques of Deep Neural Networks (DNNs) model compression method. A recent work using systematic framework of DNN weight quantization with the advanced optimization algorithm ADMM (Alternating Direction Methods of Multipliers) achieves one of state-of-art results in weight quantization. In this work, we first extend such ADMM-based framework to guarantee solution feasibility and we have further developed a multi-step, progressive DNN weight quantization framework, with dual benefits of (i) achieving further weight quantization thanks to the special property of ADMM regularization, and (ii) reducing the search space within each step. Extensive experimental results demonstrate the superior performance compared with prior work. Some highlights: we derive the first lossless and fully binarized (for all layers) LeNet-5 for MNIST; And we derive the first fully binarized (for all layers) VGG-16 for CIFAR-10 and ResNet for ImageNet with reasonable accuracy loss.Comment: Accepted by ICML workshop (ODML-CDNNR2019). arXiv admin note: substantial text overlap with arXiv:1903.0976

    Communication over Continuous Quantum Secure Dialogue using Einstein-Podolsky-Rosen States

    Full text link
    With the emergence of quantum computing and quantum networks, many communication protocols that take advantage of the unique properties of quantum mechanics to achieve a secure bidirectional exchange of information, have been proposed. In this study, we propose a new quantum communication protocol, called Continuous Quantum Secure Dialogue (CQSD), that allows two parties to continuously exchange messages without halting while ensuring the privacy of the conversation. Compared to existing protocols, CQSD improves the efficiency of quantum communication. In addition, we offer an implementation of the CQSD protocol using the Qiskit framework. Finally, we conduct a security analysis of the CQSD protocol in the context of several common forms of attack.Comment: Accepted for presentation in a poster session at QIP 202

    Brain-inspired reverse adversarial examples

    Full text link
    A human does not have to see all elephants to recognize an animal as an elephant. On contrast, current state-of-the-art deep learning approaches heavily depend on the variety of training samples and the capacity of the network. In practice, the size of network is always limited and it is impossible to access all the data samples. Under this circumstance, deep learning models are extremely fragile to human-imperceivable adversarial examples, which impose threats to all safety critical systems. Inspired by the association and attention mechanisms of the human brain, we propose reverse adversarial examples method that can greatly improve models' robustness on unseen data. Experiments show that our reverse adversarial method can improve accuracy on average 19.02% on ResNet18, MobileNet, and VGG16 on unseen data transformation. Besides, the proposed method is also applicable to compressed models and shows potential to compensate the robustness drop brought by model quantization - an absolute 30.78% accuracy improvement.Comment: Preprin

    A Unified Framework of DNN Weight Pruning and Weight Clustering/Quantization Using ADMM

    Full text link
    Many model compression techniques of Deep Neural Networks (DNNs) have been investigated, including weight pruning, weight clustering and quantization, etc. Weight pruning leverages the redundancy in the number of weights in DNNs, while weight clustering/quantization leverages the redundancy in the number of bit representations of weights. They can be effectively combined in order to exploit the maximum degree of redundancy. However, there lacks a systematic investigation in literature towards this direction. In this paper, we fill this void and develop a unified, systematic framework of DNN weight pruning and clustering/quantization using Alternating Direction Method of Multipliers (ADMM), a powerful technique in optimization theory to deal with non-convex optimization problems. Both DNN weight pruning and clustering/quantization, as well as their combinations, can be solved in a unified manner. For further performance improvement in this framework, we adopt multiple techniques including iterative weight quantization and retraining, joint weight clustering training and centroid updating, weight clustering retraining, etc. The proposed framework achieves significant improvements both in individual weight pruning and clustering/quantization problems, as well as their combinations. For weight pruning alone, we achieve 167x weight reduction in LeNet-5, 24.7x in AlexNet, and 23.4x in VGGNet, without any accuracy loss. For the combination of DNN weight pruning and clustering/quantization, we achieve 1,910x and 210x storage reduction of weight data on LeNet-5 and AlexNet, respectively, without accuracy loss. Our codes and models are released at the link http://bit.ly/2D3F0n

    Localized polarons and conductive charge carriers: understanding CaCu3_{3}Ti4_{4}O12_{12} over a broad temperature range

    Full text link
    CaCu3_{3}Ti4_{4}O12_{12} (CCTO) has a large dielectric permittivity that is independent of the probing frequency near the room temperature, which complicated due to the existence of several dynamic processes. Here, we consider the combined effects of localized charge carriers (polarons) and thermally activated charge carriers using a recently proposed statistical model to fit and understand the permittivity of CCTO measured at different frequencies over the whole temperature range accessible by our experiments. We found that the small permittivity at the lowest temperature is related to polaron frozen, while at higher temperatures the rapid increase is associated with the thermal excitation of polarons inducing the Maxwell-Wagner effect, and the final increase of the permittivity is attributed to the thermally activated conductivity. Such analysis enables us to separate the contributions from localized polarons and conductive charge carriers and quantify their activation energies

    Adversarial Robustness vs Model Compression, or Both?

    Full text link
    It is well known that deep neural networks (DNNs) are vulnerable to adversarial attacks, which are implemented by adding crafted perturbations onto benign examples. Min-max robust optimization based adversarial training can provide a notion of security against adversarial attacks. However, adversarial robustness requires a significantly larger capacity of the network than that for the natural training with only benign examples. This paper proposes a framework of concurrent adversarial training and weight pruning that enables model compression while still preserving the adversarial robustness and essentially tackles the dilemma of adversarial training. Furthermore, this work studies two hypotheses about weight pruning in the conventional setting and finds that weight pruning is essential for reducing the network model size in the adversarial setting, training a small model from scratch even with inherited initialization from the large model cannot achieve both adversarial robustness and high standard accuracy. Code is available at https://github.com/yeshaokai/Robustness-Aware-Pruning-ADMM.Comment: Accepted by ICCV 201

    StructADMM: A Systematic, High-Efficiency Framework of Structured Weight Pruning for DNNs

    Full text link
    Weight pruning methods of DNNs have been demonstrated to achieve a good model pruning rate without loss of accuracy, thereby alleviating the significant computation/storage requirements of large-scale DNNs. Structured weight pruning methods have been proposed to overcome the limitation of irregular network structure and demonstrated actual GPU acceleration. However, in prior work the pruning rate (degree of sparsity) and GPU acceleration are limited (to less than 50%) when accuracy needs to be maintained. In this work,we overcome these limitations by proposing a unified, systematic framework of structured weight pruning for DNNs. It is a framework that can be used to induce different types of structured sparsity, such as filter-wise, channel-wise, and shape-wise sparsity, as well non-structured sparsity. The proposed framework incorporates stochastic gradient descent with ADMM, and can be understood as a dynamic regularization method in which the regularization target is analytically updated in each iteration. Without loss of accuracy on the AlexNet model, we achieve 2.58X and 3.65X average measured speedup on two GPUs, clearly outperforming the prior work. The average speedups reach 3.15X and 8.52X when allowing a moderate ac-curacy loss of 2%. In this case the model compression for convolutional layers is 15.0X, corresponding to 11.93X measured CPU speedup. Our experiments on ResNet model and on other data sets like UCF101 and CIFAR-10 demonstrate the consistently higher performance of our framework

    A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers

    Full text link
    Weight pruning methods for deep neural networks (DNNs) have been investigated recently, but prior work in this area is mainly heuristic, iterative pruning, thereby lacking guarantees on the weight reduction ratio and convergence time. To mitigate these limitations, we present a systematic weight pruning framework of DNNs using the alternating direction method of multipliers (ADMM). We first formulate the weight pruning problem of DNNs as a nonconvex optimization problem with combinatorial constraints specifying the sparsity requirements, and then adopt the ADMM framework for systematic weight pruning. By using ADMM, the original nonconvex optimization problem is decomposed into two subproblems that are solved iteratively. One of these subproblems can be solved using stochastic gradient descent, the other can be solved analytically. Besides, our method achieves a fast convergence rate. The weight pruning results are very promising and consistently outperform the prior work. On the LeNet-5 model for the MNIST data set, we achieve 71.2 times weight reduction without accuracy loss. On the AlexNet model for the ImageNet data set, we achieve 21 times weight reduction without accuracy loss. When we focus on the convolutional layer pruning for computation reductions, we can reduce the total computation by five times compared with the prior work (achieving a total of 13.4 times weight reduction in convolutional layers). Our models and codes are released at https://github.com/KaiqiZhang/admm-prunin

    Progressive Weight Pruning of Deep Neural Networks using ADMM

    Full text link
    Deep neural networks (DNNs) although achieving human-level performance in many domains, have very large model size that hinders their broader applications on edge computing devices. Extensive research work have been conducted on DNN model compression or pruning. However, most of the previous work took heuristic approaches. This work proposes a progressive weight pruning approach based on ADMM (Alternating Direction Method of Multipliers), a powerful technique to deal with non-convex optimization problems with potentially combinatorial constraints. Motivated by dynamic programming, the proposed method reaches extremely high pruning rate by using partial prunings with moderate pruning rates. Therefore, it resolves the accuracy degradation and long convergence time problems when pursuing extremely high pruning ratios. It achieves up to 34 times pruning rate for ImageNet dataset and 167 times pruning rate for MNIST dataset, significantly higher than those reached by the literature work. Under the same number of epochs, the proposed method also achieves faster convergence and higher compression rates. The codes and pruned DNN models are released in the link bit.ly/2zxdls
    corecore