68 research outputs found

    The First Verification Test of Space-Ground Collaborative Intelligence via Cloud-Native Satellites

    Full text link
    Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit. However, these constellations often rely on bent-pipe architecture, resulting in high communication costs. Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications. To address these challenges, we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks, enabling diverse computing paradigms. In this work, we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation, demonstrating a remarkable 50\% accuracy improvement and a substantial 90\% data reduction. Our work sheds light on in-orbit energy, where in-orbit computing accounts for 17\% of the total onboard energy consumption. Our approach represents a significant advancement of cloud-native satellite, aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.Comment: Accepted by China Communication

    Federated NLP in Few-shot Scenarios

    Full text link
    Natural language processing (NLP) sees rich mobile applications. To support various language understanding tasks, a foundation NLP model is often fine-tuned in a federated, privacy-preserving setting (FL). This process currently relies on at least hundreds of thousands of labeled training samples from mobile clients; yet mobile users often lack willingness or knowledge to label their data. Such an inadequacy of data labels is known as a few-shot scenario; it becomes the key blocker for mobile NLP applications. For the first time, this work investigates federated NLP in the few-shot scenario (FedFSL). By retrofitting algorithmic advances of pseudo labeling and prompt learning, we first establish a training pipeline that delivers competitive accuracy when only 0.05% (fewer than 100) of the training data is labeled and the remaining is unlabeled. To instantiate the workflow, we further present a system FFNLP, addressing the high execution cost with novel designs. (1) Curriculum pacing, which injects pseudo labels to the training workflow at a rate commensurate to the learning progress; (2) Representational diversity, a mechanism for selecting the most learnable data, only for which pseudo labels will be generated; (3) Co-planning of a model's training depth and layer capacity. Together, these designs reduce the training delay, client energy, and network traffic by up to 46.0×\times, 41.2×\times and 3000.0×\times, respectively. Through algorithm/system co-design, FFNLP demonstrates that FL can apply to challenging settings where most training samples are unlabeled

    Collaborative Inference in DNN-based Satellite Systems with Dynamic Task Streams

    Full text link
    As a driving force in the advancement of intelligent in-orbit applications, DNN models have been gradually integrated into satellites, producing daily latency-constraint and computation-intensive tasks. However, the substantial computation capability of DNN models, coupled with the instability of the satellite-ground link, pose significant challenges, hindering timely completion of tasks. It becomes necessary to adapt to task stream changes when dealing with tasks requiring latency guarantees, such as dynamic observation tasks on the satellites. To this end, we consider a system model for a collaborative inference system with latency constraints, leveraging the multi-exit and model partition technology. To address this, we propose an algorithm, which is tailored to effectively address the trade-off between task completion and maintaining satisfactory task accuracy by dynamically choosing early-exit and partition points. Simulation evaluations show that our proposed algorithm significantly outperforms baseline algorithms across the task stream with strict latency constraints

    Towards Practical Few-shot Federated NLP

    Full text link
    Transformer-based pre-trained models have emerged as the predominant solution for natural language processing (NLP). Fine-tuning such pre-trained models for downstream tasks often requires a considerable amount of labeled private data. In practice, private data is often distributed across heterogeneous mobile devices and may be prohibited from being uploaded. Moreover, well-curated labeled data is often scarce, presenting an additional challenge. To address these challenges, we first introduce a data generator for federated few-shot learning tasks, which encompasses the quantity and skewness of scarce labeled data in a realistic setting. Subsequently, we propose AUG-FedPrompt, a prompt-based federated learning system that exploits abundant unlabeled data for data augmentation. Our experiments indicate that AUG-FedPrompt can perform on par with full-set fine-tuning with a limited amount of labeled data. However, such competitive performance comes at a significant system cost.Comment: EuroSys23 worksho

    TFormer: A Transmission-Friendly ViT Model for IoT Devices

    Full text link
    Deploying high-performance vision transformer (ViT) models on ubiquitous Internet of Things (IoT) devices to provide high-quality vision services will revolutionize the way we live, work, and interact with the world. Due to the contradiction between the limited resources of IoT devices and resource-intensive ViT models, the use of cloud servers to assist ViT model training has become mainstream. However, due to the larger number of parameters and floating-point operations (FLOPs) of the existing ViT models, the model parameters transmitted by cloud servers are large and difficult to run on resource-constrained IoT devices. To this end, this paper proposes a transmission-friendly ViT model, TFormer, for deployment on resource-constrained IoT devices with the assistance of a cloud server. The high performance and small number of model parameters and FLOPs of TFormer are attributed to the proposed hybrid layer and the proposed partially connected feed-forward network (PCS-FFN). The hybrid layer consists of nonlearnable modules and a pointwise convolution, which can obtain multitype and multiscale features with only a few parameters and FLOPs to improve the TFormer performance. The PCS-FFN adopts group convolution to reduce the number of parameters. The key idea of this paper is to propose TFormer with few model parameters and FLOPs to facilitate applications running on resource-constrained IoT devices to benefit from the high performance of the ViT models. Experimental results on the ImageNet-1K, MS COCO, and ADE20K datasets for image classification, object detection, and semantic segmentation tasks demonstrate that the proposed model outperforms other state-of-the-art models. Specifically, TFormer-S achieves 5% higher accuracy on ImageNet-1K than ResNet18 with 1.4×\times fewer parameters and FLOPs.Comment: IEEE Transactions on Parallel and Distributed System

    Seed Feature Maps-based CNN Models for LEO Satellite Remote Sensing Services

    Full text link
    Deploying high-performance convolutional neural network (CNN) models on low-earth orbit (LEO) satellites for rapid remote sensing image processing has attracted significant interest from industry and academia. However, the limited resources available on LEO satellites contrast with the demands of resource-intensive CNN models, necessitating the adoption of ground-station server assistance for training and updating these models. Existing approaches often require large floating-point operations (FLOPs) and substantial model parameter transmissions, presenting considerable challenges. To address these issues, this paper introduces a ground-station server-assisted framework. With the proposed framework, each layer of the CNN model contains only one learnable feature map (called the seed feature map) from which other feature maps are generated based on specific rules. The hyperparameters of these rules are randomly generated instead of being trained, thus enabling the generation of multiple feature maps from the seed feature map and significantly reducing FLOPs. Furthermore, since the random hyperparameters can be saved using a few random seeds, the ground station server assistance can be facilitated in updating the CNN model deployed on the LEO satellite. Experimental results on the ISPRS Vaihingen, ISPRS Potsdam, UAVid, and LoveDA datasets for semantic segmentation services demonstrate that the proposed framework outperforms existing state-of-the-art approaches. In particular, the SineFM-based model achieves a higher mIoU than the UNetFormer on the UAVid dataset, with 3.3x fewer parameters and 2.2x fewer FLOPs.Comment: 11 page

    Accelerating Vertical Federated Learning

    Full text link
    Privacy, security and data governance constraints rule out a brute force process in the integration of cross-silo data, which inherits the development of the Internet of Things. Federated learning is proposed to ensure that all parties can collaboratively complete the training task while the data is not out of the local. Vertical federated learning is a specialization of federated learning for distributed features. To preserve privacy, homomorphic encryption is applied to enable encrypted operations without decryption. Nevertheless, together with a robust security guarantee, homomorphic encryption brings extra communication and computation overhead. In this paper, we analyze the current bottlenecks of vertical federated learning under homomorphic encryption comprehensively and numerically. We propose a straggler-resilient and computation-efficient accelerating system that reduces the communication overhead in heterogeneous scenarios by 65.26% at most and reduces the computation overhead caused by homomorphic encryption by 40.66% at most. Our system can improve the robustness and efficiency of the current vertical federated learning framework without loss of security
    • …
    corecore