46,151 research outputs found
The Effects of Air and Underwater Blast on Composite Sandwich Panels and Tubular Laminate Structures
The resistance of glass-fibre reinforced polymer (GFRP) sandwich panels and laminate tubes to blast in air and underwater environments has been studied. Procedures for monitoring the structural response of such materials during blast events have been devised. High-speed photography was employed during the air-blast loading of GFRP sandwich panels, in conjunction with digital image correlation (DIC), to monitor the deformation of these structures under shock loading. Failure mechanisms have been revealed by using DIC and confirmed in post-test sectioning. Strain gauges were used to monitor the structural response of similar sandwich materials and GFRP tubular laminates during underwater shocks. The effect of the backing medium (air or water) of the target facing the shock has been identified during these studies. Mechanisms of failure have been established such as core crushing, skin/core cracking, delamination and fibre breakage. Strain gauge data supported the mechanisms for such damage. These studies were part of a research programme sponsored by the Office of Naval Research (ONR) investigating blast loading of composite naval structures. The full-scale experimental results presented here will aid and assist in the development of analytical and computational models. Furthermore, it highlights the importance of support and boundary conditions with regards to blast resistant design
Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions
Using a hadron and string cascade model, JPCIAE, the energy and centrality
dependences of charged particle pseudorapidity density in relativistic nuclear
collisions were studied. Within the framework of this model, both the
relativistic experimental data and the PHOBOS and PHENIX
data at =130 GeV could be reproduced fairly well without retuning
the model parameters. The predictions for full RHIC energy collisions
and for collisions at the ALICE energy were given. Participant nucleon
distributions were calculated based on different methods. It was found that the
number of participant nucleons, for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.
Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator
It is a common practice to assign the return period of a given storm event to the urban pluvial flood event that such storm generates. However, this approach may be inappropriate as rainfall events with the same return period can produce different urban pluvial flooding events, i.e., with different associated flood extent, water levels and return periods. This depends on the characteristics of the rainfall events, such as spatial variability, and on other characteristics of the sewer system and the catchment. To address this, the paper presents an innovative contribution to produce stochastic urban pluvial flood hazard maps. A stochastic rainfall generator for urban-scale applications was employed to generate an ensemble of spatially—and temporally—variable design storms with similar return period. These were used as input to the urban drainage model of a pilot urban catchment (~9 km2) located in London, UK. Stochastic flood hazard maps were generated through a frequency analysis of the flooding generated by the various storm events. The stochastic flood hazard maps obtained show that rainfall spatial-temporal variability is an important factor in the estimation of flood likelihood in urban areas. Moreover, as compared to the flood hazard maps obtained by using a single spatially-uniform storm event, the stochastic maps generated in this study provide a more comprehensive assessment of flood hazard which enables better informed flood risk management decisions
Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis
Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1-/-) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1-/- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with cH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1-/- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1-/- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. © 2010 Shin et al
On multiplicity correlations in the STAR data
The STAR data on the multiplicity correlations between narrow psudorapidity
bins in the pp and AuAu collisions are discussed. The PYTHIA 8.145 generator is
used for the pp data, and a naive superposition model is presented for the AuAu
data. It is shown that the PYTHIA generator with default parameter values
describes the pp data reasonably well, whereas the superposition model fails to
reproduce the centrality dependence seen in the data. Some possible reasons for
this failure and a comparison with other models are presented.Comment: 8 pages, 3 figure
On the back reaction of gravitational and particle emission and absorption from straight thick cosmic strings: A toy model
The emission and absorption of gravitational waves and massless particles of
an infinitely long straight cosmic string with finite thickness are studied. It
is shown in a general term that the back reaction of the emission and
absorption {\em always} makes the symmetry axis of the string singular. The
singularity is a scalar singularity and cannot be removed.Comment: To appear in Gen. Relativ. Gra
AGI and the Knight-Darwin Law: why idealized AGI reproduction requires collaboration
Can an AGI create a more intelligent AGI? Under idealized assumptions, for a certain theoretical type of intelligence, our answer is: “Not without outside help”. This is a paper on the mathematical structure of AGI populations when parent AGIs create child AGIs. We argue that such populations satisfy a certain biological law. Motivated by observations of sexual reproduction in seemingly-asexual species, the Knight-Darwin Law states that it is impossible for one organism to asexually produce another, which asexually produces another, and so on forever: that any sequence of organisms (each one a child of the previous) must contain occasional multi-parent organisms, or must terminate. By proving that a certain measure (arguably an intelligence measure) decreases when an idealized parent AGI single-handedly creates a child AGI, we argue that a similar Law holds for AGIs
A Kind of Affine Weighted Moment Invariants
A new kind of geometric invariants is proposed in this paper, which is called
affine weighted moment invariant (AWMI). By combination of local affine
differential invariants and a framework of global integral, they can more
effectively extract features of images and help to increase the number of
low-order invariants and to decrease the calculating cost. The experimental
results show that AWMIs have good stability and distinguishability and achieve
better results in image retrieval than traditional moment invariants. An
extension to 3D is straightforward
Linear magnetoresistance in commercial n-type silicon due to inhomogeneous doping
Free electron theory tells us that resistivity is independent of magnetic
field. In fact, most observations match the semiclassical prediction of a
magnetoresistance that is quadratic at low fields before saturating. However, a
non-saturating linear magnetoresistance has been observed in exotic
semiconductors such as silver chalcogenides, lightly-doped InSb, N-doped InAs,
MnAs-GaAs composites, PrFeAsO, and epitaxial graphene. Here we report the
observation of a large linear magnetoresistance in the ohmic regime in
commonplace commercial n-type silicon wafer. It is well-described by a
classical model of spatially fluctuating donor densities, and may be amplified
by altering the aspect ratio of the sample to enhance current-jetting:
increasing the width tenfold increased the magnetoresistance at 8 T from 445 %
to 4707 % at 35 K. This physical picture may well offer insights into the large
magnetoresistances recently observed in n-type and p-type Si in the non-ohmic
regime.Comment: submitted to Nature Material
- …