355 research outputs found

    NETWORK DEVICE SYSTEM LOGGING SUMMARIZATION BASED ON LOW-RANK ADAPTATION AND CONTRASTIVE LEARNING

    Get PDF
    Techniques are presented herein that support the automatic generation of refined and summarized text from a system logging (syslog) message sequence. Aspects of the presented techniques employ an abstractive syslog summarization large language model (LLM) that is trained with contrastive learning and then fine-tuned using a Low-Rank Adaptation (LoRA) methodology. Under further aspects of the presented techniques, auxiliary text (such as network incident reports and application incident reports) is added to the prompt of the input of the LLM model to help the model generate a richer syslog summarization

    Advances and challenges in shale oil development: A critical review

    Get PDF
        Different from the conventional oil reservoirs, the primary storage space of shale is micro/nano pore networks. Moreover, the multiscale and multi-minerals characteristics of shale also attract increasing attentions from researchers. In this work, the advances and challenges in the development of shale oil are summarized from following aspects: phase behavior, flow mechanisms, reservoir numerical simulation and production optimization. The phase behavior of fluids confined in shale nanopores are discussed on the basis of theoretical calculations, experiments, and molecular simulations. The fluid transport mechanisms through shale matrix are analyzed in terms of molecular dynamics, pore scale simulations, and experimental studies. The methods employed in fracture propagation simulation and production optimization of shale oil are also introduced. Clarifying the problems of current research and the need for future studies are conducive to promoting the scientific and effective development of shale oil resources.Cited as: Feng, Q., Xu, S., Xing, X., Zhang, W., Wang, S. Advances and challenges in shale oil development: A critical review. Advances in Geo-Energy Research, 2020, 4(4), 406-418, doi: 10.46690/ager.2020.04.0

    Pharmacokinetics and tissue distribution of N-3- methoxybenzyl-palmitamide in rat: A macamide derived from Lepidium meyenii

    Get PDF
    Purpose: To study the pharmacokinetics and tissue distribution of N-3-methoxybenzyl-palmitamide (MPM) derived from Lepidium meyenii (Maca)Methods: MPM and N-benzylpalmitamide (BPM, as the internal standard, IS) were prepared by one-pot synthesis method and characterized. For the analysis of MPM in rat plasma and tissue samples, a rapid ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method was developed and validated by optimizing sample preparation conditions and UPLC conditions. Finally, the pharmacokinetics and biodistribution of MPM after oral administration in rats were studied.Results: The lower limit of quantification (LLOQ) and limit of detection (LOD) of the UPLC-MS/MS method were 1.2 and 5.0 ng/mL, respectively. Good linear relationship of calibration curve (r > 0.9951) was achieved over the range of 5 – 5000 ng/mL. In pharmacokinetics, plasma concentration-time curve of MPM showed double peaks. The highest distribution of MPM after absorption was in the stomach, followed by lung. The absorption and eliminate rate of MPM were slow in rats. In fact, MPM displayed a lung targeting property.Conclusion: The developed UPLC-MS/MS method is suitable for plasma and tissue distribution studies of MPM in rats. The present study can provide guidance for the further development and utilization of Maca tuber.Keywords: Macamide, Maca tuber, Lepidium meyenii, Pharmacokinetics, Tissue distribution, UPLCMS/M

    Pore-scale simulation of gas displacement after water flooding using three-phase lattice Boltzmann method

    Get PDF
    Water flooding is a commonly used technique to improve oil recovery, although the amount of oil left in reservoirs after the procedure is still significant. Gas displacement after water flooding is an effective way to recover residual oil, but the occurrence state and flow principles of multiphase fluid after gas injection are still ambiguous. Therefore, the gas displacement process after water flooding should be studied on the pore scale to provide a basis for formulating a reasonable gas injection program. Most of the current pore-scale studies focus on two-phase flow, while simulations that account for the influence of oil-gas miscibility and injected water are seldom reported. In this work, the multi-component multi-phase Shan-Chen lattice Boltzmann model is used to simulate the gas displacement after water flooding in a porous medium, and the effects of injected water, viscosity ratio, pore structure, and miscibility are analyzed. It is established that the injected water will cause gas flow path variations and lead to premature gas channeling. Under the impact of capillary pressure, the water retained in the porous medium during the water flooding stage further imbibes into the tiny pores during gas injection and displaces the remaining oil. When miscibility is considered, the oil-gas interface disappears, eliminating the influence of the capillary effect on the fluid flow and enabling the recovery of remaining oil at the corner. This study sheds light on the gas displacement mechanisms after water flooding from the pore-scale perspective and provides a potential avenue for improving oil recovery.Document Type: Original articleCited as: Wang, S., Chen, L., Feng, Q., Chen, L., Fang, C., Cui, R. Pore-scale simulation of gas displacement after water flooding using three-phase lattice Boltzmann method. Capillarity, 2023, 6(2): 19-30. https://doi.org/10.46690/capi.2023.02.0

    Cr3_3X4_4 (X=Se, Te) monolayers as new platform to realize robust spin filter, spin diode and spin valve

    Full text link
    Two-dimensional ferromagnetic (FM) half-metals are promising candidates for advanced spintronic devices with small-size and high-capacity. Motivated by recent report on controlling synthesis of FM Cr3_3Te4_4 nanosheet, herein, to explore the potential application in spintronics, we designed spintronic devices based on Cr3_3X4_4 (X=Se, Te) monolayers and investigated their spin transport properties. We found that Cr3_3Te4_4 monolayer based device shows spin filtering and dual spin diode effect when applying bias voltage, while Cr3_3S4_4 monolayer is an excellent platform to realize a spin valve. The different transport properties are primarily ascribed to the semiconducting spin channel, which is close to and away from the Fermi level in Cr3_3Te4_4 and Cr3_3Se4_4 monolayers, respectively. Interestingly, the current in monolayer Cr3_3Se4_4 based device also displays a negative differential resistance effect (NDRE) and a high magnetoresistance ratio (up to 2*103^3). Moreover, we found thermally induced spin filtering effect and NDRE in Cr3_3Se4_4 junction when applying temperature gradient instead of bias voltage. These theoretical findings highlight the potential of Cr3_3X4_4 (X=Se, Te) monolayers in spintronic applications and put forward realistic materials to realize nanosale spintronic device

    Pressure Transient Behavior of Horizontal Well with Time-Dependent Fracture Conductivity in Tight Oil Reservoirs

    Get PDF
    This work presents a discussion on the pressure transient response of multistage fractured horizontal well in tight oil reservoirs. Based on Green’s function, a semianalytical model is put forward to obtain the behavior. Our proposed model accounts for fluid flow in four contiguous regions of the tight formation by using pressure continuity and mass conservation. The time-dependent conductivity of hydraulic fractures, which is ignored in previous models but highlighted by recent experiments, is also taken into account in our proposed model. We also include the effect of pressure drop along a horizontal wellbore. We substantiate the validity of our model and analyze the different flow regimes, as well as the effects of initial conductivity, fracture distribution, and geometry on the pressure transient behavior. Our results suggest that the decrease of fracture conductivity has a tremendous effect on the well performance. Finally, we compare our model results with the field data from a multistage fractured horizontal well in Jimsar sag, Xinjiang oilfield, and a good agreement is obtained

    Numerical and experimental analysis on green laser crystallization of amorphous silicon thin films

    Get PDF
    The laser fluence effect on crystallization of amorphous silicon irradiated by a frequency-doubled Nd: YAG laser has been studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for crystallization of 200nm amorphous silicon. Temperature distribution with time and melt depth are analyzed. Besides the model, Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research

    Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Get PDF
    Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS), has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa) through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa). Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions
    corecore