222 research outputs found

    Testing a Predictive Theoretical Model for the Mass Loss Rates of Cool Stars

    Full text link
    The basic mechanisms responsible for producing winds from cool, late-type stars are still largely unknown. We take inspiration from recent progress in understanding solar wind acceleration to develop a physically motivated model of the time-steady mass loss rates of cool main-sequence stars and evolved giants. This model follows the energy flux of magnetohydrodynamic turbulence from a subsurface convection zone to its eventual dissipation and escape through open magnetic flux tubes. We show how Alfven waves and turbulence can produce winds in either a hot corona or a cool extended chromosphere, and we specify the conditions that determine whether or not coronal heating occurs. These models do not utilize arbitrary normalization factors, but instead predict the mass loss rate directly from a star's fundamental properties. We take account of stellar magnetic activity by extending standard age-activity-rotation indicators to include the evolution of the filling factor of strong photospheric magnetic fields. We compared the predicted mass loss rates with observed values for 47 stars and found significantly better agreement than was obtained from the popular scaling laws of Reimers, Schroeder, and Cuntz. The algorithm used to compute cool-star mass loss rates is provided as a self-contained and efficient computer code. We anticipate that the results from this kind of model can be incorporated straightforwardly into stellar evolution calculations and population synthesis techniques.Comment: 23 pages (emulateapj style), 14 figures, ApJ, in press. A brief IDL subroutine that implements the model described in this paper will be distributed as "online-only material," and this code is also available at http://www.cfa.harvard.edu/~scranmer/cranmer_data.htm

    TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana

    Get PDF
    Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis

    Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings

    Get PDF
    The seed maturation programme occurs only during the late phase of embryo development, and repression of the maturation genes is pivotal for seedling development. However, mechanisms that repress the expression of this programme in vegetative tissues are not well understood. A genetic screen was performed for mutants that express maturation genes in leaves. Here, it is shown that mutations affecting SDG8 (SET DOMAIN GROUP 8), a putative histone methyltransferase, cause ectopic expression of a subset of maturation genes in leaves. Further, to investigate the relationship between SDG8 and the Polycomb Group (PcG) proteins, which are known to repress many developmentally important genes including seed maturation genes, double mutants were made and formation of somatic embryos was observed on mutant seedlings with mutations in both SDG8 and EMF2 (EMBRYONIC FLOWER 2). Analysis of histone methylation status at the chromatin sites of a number of maturation loci revealed a synergistic effect of emf2 and sdg8 on the deposition of the active histone mark which is the trimethylation of Lys4 on histone 3 (H3K4me3). This is consistent with high expression of these genes and formation of somatic embryos in the emf2 sdg8 double mutants. Interestingly, a double mutant of sdg8 and vrn2 (vernalization2), a paralogue of EMF2, grew and developed normally to maturity. These observations demonstrate a functional cooperative interplay between SDG8 and an EMF2-containing PcG complex in maintaining vegetative cell identity by repressing seed genes to promote seedling development. The work also indicates the functional specificities of PcG complexes in Arabidopsis

    Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components

    Get PDF
    Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis

    Oncology Section EDGE Task Force on Cancer: Measures of Cancer-Related Fatigue—A Systematic Review

    Get PDF
    Background: Cancer-related fatigue (CRF) is one of the most common side effects of cancer and cancer treatment. Being able to accurately screen for and assess CRF will improve access to and prescriptions for interventions. Valid and reliable measures to screen for and assess CRF need to be identified. Purpose: To identify and recommend reliable, valid, and clinically useful tools to screen for and assess CRF among those treated for cancer. Methods: A systematic review of the literature was conducted to assess the published psychometric properties and clinical feasibility of each method identified. Task force members independently reviewed each measure using the Cancer EDGE Rating Form. Results: Review of 136 studies resulted in recommendations for 14 questionnaires. Five unidimensional and 9 multidimensional questionnaires are recommended by the Oncology EDGE Task Force. Conclusion: The 10-point Numeric Rating Scale for Fatigue is best as a screening tool, whereas the Multidimensional Fatigue Symptom Inventory is a highly recommended multidimensional tool. Ease of screening can promote referral for interventions, whereas thorough assessment drives appropriate interventions

    Decoding the Epigenetic Language of Plant Development

    Get PDF
    Epigenetics refers to the study of heritable changes in gene expression or cellular phenotype without changes in DNA sequence. Epigenetic regulation of gene expression is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called DNA Methyltransferases and is involved in many cellular processes, such as silencing of transposable elements and pericentromeric repeats, X-chromosome inactivation and genomic imprinting, etc. Histone modifications refer to posttranslational covalent attachment of chemical groups onto histones such as phosphorylation, acetylation, and methylation, etc. Histone variants, the non-canonical histones with amino acid sequences divergent from canonical histones, can have different epigenetic impacts on the genome from canonical histones. Higher-order chromatin structures maintained or modified by chromatin remodeling proteins also play important roles in regulating gene expression. Small non-coding RNAs play various roles in the regulation of gene expression at pre- as well as posttranscriptional levels. A special issue of Molecular Plant on ‘Epigenetics and Plant Development’ (Volume 4, Number 2, 2009) published a variety of articles covering many aspects of epigenetic regulation of plant development. We have tried here to present a bird's-eye view of these credible efforts towards understanding the mysterious world of epigenetics. The majority of the articles are about the chromatin modifying proteins, including histone modifiers, histone variants, and chromatin remodeling proteins that regulate various developmental processes, such as flowering time, vernalization, stem cell maintenance, and response to hormonal and environmental stresses, etc. Regulation of expression of seed transcriptome, involvement of direct tandem repeat elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, and epigenetic barriers in species hybridization are described well. The last two papers are about the Pol V-mediated heterochromatin formation independent of the 24nt-siRNA and the effect of genome position and tissue type on epigenetic regulation of gene expression. These findings not only further our current understanding of epigenetic mechanisms involved in many biological phenomena, but also pave the path for the future work, by raising many new questions that are discussed in the following lines

    In Vitro Study of the Effects of Angiostrongylus cantonensis Larvae Extracts on Apoptosis and Dysfunction in the Blood-Brain Barrier (BBB)

    Get PDF
    It has been hypothesized that blood-brain barrier (BBB) dysfunction in Angiostrongylus cantonensis infection might be due to the apoptosis of the hosts' BBB cells. Here, we evaluated this hypothesis through several methods, all based on an in vitro mouse BBB model consisting of primary culture brain microvascular endothelial cells (BMECs) and brain astrocytic cells (BACs). In the present study, a four-hour percolation and HRP permeability experiment showed that A. cantonensis larvae extracts can increase the permeability of the BBB. Apoptosis among BMECs and BACs after exposure to larvae extracts was monitored by TUNEL and annexin-V-FITC/PI double staining. A. cantonensis larvae extracts were found to induce apoptosis in both BMECs and BACs. For this reason, we concluded that the induction of apoptosis might participate in the BBB dysfunction observed during angiostrongyliasis. Improved fundamental understanding of how A. cantonensis induces apoptosis may lead to new approaches to the treatment or prevention of this parasitic disease

    Kaposi's Sarcoma-Associated Herpesvirus-Encoded LANA Down-Regulates IL-22R1 Expression through a Cis-Acting Element within the Promoter Region

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is considered to be a necessary, but not sufficient, causal agent of Kaposi's sarcoma (KS). All forms of KS are characterized by the proliferation of spindle-shaped cells, and most (>90%) spindle cells from KS lesions are latently infected with KSHV. During KSHV latency, only a few viral genes are expressed. Among those latent genes, the ORF 73 gene encodes the latency-associated nuclear antigen (LANA), which is critical for the establishment and maintenance of the latent KSHV infection. Much evidence suggests that many cytokines can increase the frequency and aggressiveness of KS. In this study, a microarray analysis of KS and normal tissues revealed that multiple cytokines and cytokine receptors are regulated by KSHV latent infection. Of special interest, IL-22R1 transcript level was found to be down-regulated in the KS tissue. To study the possible regulation of IL-22R1 by LANA, the IL-22R1 promoter was constructed and found to contain a LANA-binding site (LBS). LANA was demonstrated to down-regulate IL-22R1 expression via direct binding to the LBS located within the IL-22R1 promoter region. Furthermore, KSHV latently infected cells showed an impaired response to IL-22 stimulation. These results suggest that LANA can regulate host factor expression by directly binding to a cis-acting element within the factor's promoter to benefit latent viral infection and suppression of the antiviral immune response
    corecore