622 research outputs found

    Stochastic Collapsed Variational Inference for Sequential Data

    Full text link
    Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm in the sequential data setting. Our algorithm is applicable to both finite hidden Markov models and hierarchical Dirichlet process hidden Markov models, and to any datasets generated by emission distributions in the exponential family. Our experiment results on two discrete datasets show that our inference is both more efficient and more accurate than its uncollapsed version, stochastic variational inference.Comment: NIPS Workshop on Advances in Approximate Bayesian Inference, 201

    Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment

    Full text link
    Understanding mobile traffic patterns of large scale cellular towers in urban environment is extremely valuable for Internet service providers, mobile users, and government managers of modern metropolis. This paper aims at extracting and modeling the traffic patterns of large scale towers deployed in a metropolitan city. To achieve this goal, we need to address several challenges, including lack of appropriate tools for processing large scale traffic measurement data, unknown traffic patterns, as well as handling complicated factors of urban ecology and human behaviors that affect traffic patterns. Our core contribution is a powerful model which combines three dimensional information (time, locations of towers, and traffic frequency spectrum) to extract and model the traffic patterns of thousands of cellular towers. Our empirical analysis reveals the following important observations. First, only five basic time-domain traffic patterns exist among the 9,600 cellular towers. Second, each of the extracted traffic pattern maps to one type of geographical locations related to urban ecology, including residential area, business district, transport, entertainment, and comprehensive area. Third, our frequency-domain traffic spectrum analysis suggests that the traffic of any tower among the 9,600 can be constructed using a linear combination of four primary components corresponding to human activity behaviors. We believe that the proposed traffic patterns extraction and modeling methodology, combined with the empirical analysis on the mobile traffic, pave the way toward a deep understanding of the traffic patterns of large scale cellular towers in modern metropolis.Comment: To appear at IMC 201

    Learning For Predictive Control:A Dual Gaussian Process Approach

    Get PDF
    An important issue in model-based control design is that an accurate dynamic model of the system is generally nonlinear, complex, and costly to obtain. This limits achievable control performance in practice. Gaussian process (GP) based estimation of system models is an effective tool to learn unknown dynamics directly from input/output data. However, conventional GP-based control methods often ignore the computational cost associated with accumulating data during the operation of the system and how to handle forgetting in continuous adaption. In this paper, we present a novel Dual Gaussian Process (DGP) based model predictive control (MPC) strategy that enables efficient use of online learning based predictive control without the danger of catastrophic forgetting. The bio-inspired DGP structure is a combination of a long-term GP and a short-term GP, where the long-term GP is used to keep the learned knowledge in memory and the short-term GP is employed to rapidly compensate unknown dynamics during online operation. Furthermore, a novel recursive online update strategy for the short-term GP is proposed to successively improve the learnt model during online operation. Effectiveness of the proposed strategy is demonstrated via numerical simulations

    Learning For Predictive Control: A Dual Gaussian Process Approach

    Full text link
    An important issue in model-based control design is that an accurate dynamic model of the system is generally nonlinear, complex, and costly to obtain. This limits achievable control performance in practice. Gaussian process (GP) based estimation of system models is an effective tool to learn unknown dynamics directly from input/output data. However, conventional GP-based control methods often ignore the computational cost associated with accumulating data during the operation of the system and how to handle forgetting in continuous adaption. In this paper, we present a novel Dual Gaussian Process (DGP) based model predictive control (MPC) strategy that enables efficient use of online learning based predictive control without the danger of catastrophic forgetting. The bio-inspired DGP structure is a combination of a long-term GP and a short-term GP, where the long-term GP is used to keep the learned knowledge in memory and the short-term GP is employed to rapidly compensate unknown dynamics during online operation. Furthermore, a novel recursive online update strategy for the short-term GP is proposed to successively improve the learnt model during online operation. Effectiveness of the proposed strategy is demonstrated via numerical simulations.Comment: arXiv admin note: substantial text overlap with arXiv:2112.1166

    Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers

    Get PDF
    Infrared quantum cutting involving Yb(3+) 950–1,000 nm ((2) F(5/2) → (2) F(7/2)) and Ho(3+) 1,007 nm ((5)S(2),(5)F(4) → (5)I(6)) as well as 1,180 nm ((5)I(6) → (5)I(8)) emissions is achieved in BaGdF(5): Ho(3+), Yb(3+) nanoparticles which are synthesized by a facile hydrothermal route. The mechanisms through first- and second-order energy transfers were analyzed by the dependence of Yb(3+) doping concentration on the visible and infrared emissions, decay lifetime curves of the (5) F(5) → (5)I(8), (5)S(2)/(5)F(4) → (5)I(8), and (5) F(3) → (5)I(8) of Ho(3+), in which a back energy transfer from Yb(3+) to Ho(3+) is first proposed to interpret the spectral characteristics. A modified calculation equation for quantum efficiency of Yb(3+)-Ho(3+) couple by exciting at 450 nm was presented according to the quantum cutting mechanism. Overall, the excellent luminescence properties of BaGdF(5): Ho(3+), Yb(3+) near-infrared quantum cutting nanoparticles could explore an interesting approach to maximize the performance of solar cells
    corecore