3,496 research outputs found
Mitochondrial Control and Guidance of Cellular Activities of T Cells.
Immune cells protect us against infection and cancer cells, as well as functioning during healing processes to support tissue repairing and regeneration. These behaviors require that upon stimulation from immune activation the appropriate subsets of immune cells are generated. In addition to activation-induced signaling cascades, metabolic reprogramming (profound changes in metabolic pathways) also provides a novel form of regulation to control the formation of desirable immune responses. Immune cells encounter various nutrient compositions by circulating in bloodstream and infiltrating into peripheral tissues; therefore, proper engagement of metabolic pathways is critical to fulfill the metabolic demands of immune cells. Metabolic pathways are tightly regulated mainly via mitochondrial dynamics and the activities of the tricarboxylic acid cycle and the electron transport chain. In this review, we will discuss how metabolic reprogramming influences activation, effector functions, and lineage polarization in T cells, with a particular focus on mitochondria-regulated metabolic checkpoints. Additionally, we will further explore how in various diseases deregulation and manipulation of mitochondrial regulation can occur and be exploited. Furthermore, we will discuss how this knowledge can facilitate the design of immunotherapies
Numerical Modeling of GMAW Arc
© 2005 IEEE. Reprinted, with permission.A comprehensive model has been developed to simulate the transient, coupled transport phenomena occurring during a gas metal arc welding process. This includes the arc plasma; melting of the electrode; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool fluid flow and dynamics. The fluid flow and heat transfer in both the arc and the metal were simulated and coupled through the boundary conditions at the arc-metal interface at each time step. The detached droplet in the arc and the deformed weld pool surface were found to cause significant changes in the distributions of arc temperature and arc pressure, which are usually assumed to have Gaussian distributions at the workpiece surface. The comprehensive model could provide more realistic boundary conditions to calculate the heat transfer and fluid flow both in the plasma and the metal. The predicted arc plasma distribution, droplet flight trajectory, droplet acceleration and final weld bead shape compared favorably with the published experimental results. This paper was to present the heat transfer and fluid flow in the arc plasma
Accelerated cellular senescence in solid tumor therapy
Accelerated cellular senescence (ACS) is an emerging concept that implicates sustained, telomere-independent cell cycle arrest of neoplastic cells in response to chemotherapeutic agents, ionizing radiation, oxidative stress, or the presence of selective oncogenic stimuli. Recent evidence suggests that a subset of tumor cells induced in a state of reversible ACS can escape cell cycle arrest and resume proliferation accounting for cancer progression. The purpose of this review is to describe our current understanding of ACS including signaling pathways of senescence escape, role of senescence biomarkers, and rationale for senescence-based therapy. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”
Superconductivity in MgB_2 doped with Ti and C
Measurements of the superconducting upper critical field, H_{c2}, and
critical current density, J_c, have been carried out for MgB_2 doped with Ti
and/or C in order to explore the problems encountered if these dopants are used
to enhance the superconducting performance. Carbon replaces boron in the MgB_2
lattice and apparently shortens the electronic mean free path thereby raising
H_c2. Titanium forms precipitates of either TiB or TiB_2 that enhance the flux
pinning and raise J_c. Most of these precipitates are intra-granular in the
MgB_2 phase. If approximately 0.5% Ti and approximately 2% C are co-deposited
with B to form doped boron fibers and these fibers are in turn reacted in Mg
vapor to form MgB_2, the resulting superconductor has H_{c2}(T=0) ~ 25 T and
J_c ~ 10,000 A/cm**2 at 5 K and 2.2 T.Comment: 11 pages, 10 figure
Canonical theory of spherically symmetric spacetimes with cross-streaming null dusts
The Hamiltonian dynamics of two-component spherically symmetric null dust is
studied with regard to the quantum theory of gravitational collapse. The
components--the ingoing and outgoing dusts--are assumed to interact only
through gravitation. Different kinds of singularities, naked or "clothed", that
can form during collapse processes are described. The general canonical
formulation of the one-component null-dust dynamics by Bicak and Kuchar is
restricted to the spherically symmetric case and used to construct an action
for the two components. The transformation from a metric variable to the
quasilocal mass is shown to simplify the mathematics. The action is reduced by
a choice of gauge and the corresponding true Hamiltonian is written down.
Asymptotic coordinates and energy densities of dust shells are shown to form a
complete set of Dirac observables. The action of the asymptotic time
translation on the observables is defined but it has been calculated explicitly
only in the case of one-component dust (Vaidya metric).Comment: 15 pages, 3 figures, submitted to Phys. Rev.
Real time statistical field theory
We have written a {\it Mathematica} program that calculates the integrand
corresponding to any amplitude in the closed-time-path formulation of real time
statistical field theory. The program is designed so that it can be used by
someone with no previous experience with {\it Mathematica}. It performs the
contractions over the tensor indices that appear in real time statistical field
theory and gives the result in the 1-2, Keldysh or RA basis. We have used the
program to calculate the ward identity for the QED 3-point function, the QED
4-point function for two photons and two fermions, and the QED 5-point function
for three photons and two fermions. In real time statistical field theory,
there are seven 3-point functions, 15 4-point functions and 31 5-point
functions. We produce a table that gives the results for all of these
functions. In addition, we give a simple general expression for the KMS
conditions between -point green functions and vertex functions, in both the
Keldysh and RA basesComment: 25 pages, 12 figure
Shear viscosity of hot scalar field theory in the real-time formalism
Within the closed time path formalism a general nonperturbative expression is
derived which resums through the Bethe-Salpter equation all leading order
contributions to the shear viscosity in hot scalar field theory. Using a
previously derived generalized fluctuation-dissipation theorem for nonlinear
response functions in the real-time formalism, it is shown that the
Bethe-Salpeter equation decouples in the so-called (r,a) basis. The general
result is applied to scalar field theory with pure lambda*phi**4 and mixed
g*phi**3+lambda*phi**4 interactions. In both cases our calculation confirms the
leading order expression for the shear viscosity previously obtained in the
imaginary time formalism.Comment: Expanded introduction and conclusions. Several references and a
footnote added. Fig.5 and its discussion in the text modified to avoid double
counting. Signs in Eqs. (45) and (53) correcte
Mixing state of atmospheric particles over the North China Plain
In this unique processing study, the mixing state of ambient submicron aerosol particles in terms of hygroscopicity and volatility was investigated with a Hygroscopicity Tandem Differential Mobility Analyzer and a Volatility Tandem Differential Mobility Analyzer. The measurements were conducted at a regional atmospheric observational site in the North China Plain (NCP) from 8 July to 9 August, 2013. Multimodal patterns were observed in the probability density functions of the hygroscopicity parameter κ and the shrink factor, indicating that ambient particles are mostly an external mixture of particles with different hygroscopicity and volatility. Linear relationships were found between the number fraction of hydrophobic and non-volatile populations, reflecting the dominance of soot in hydrophobic and non-volatile particles. The number fraction of non-volatile particles is lower than that of hydrophobic particles in most cases, indicating that a certain fraction of hydrophobic particles is volatile. Distinct diurnal patterns were found for the number fraction of the hydrophobic and non-volatile particles, with a higher level at nighttime and a lower level during the daytime. The result of air mass classification shows that aerosol particles in air masses coming from north with high moving speed have a high number fraction of hydrophobic/non-volatile population, and are more externally mixed. Only minor differences can be found between the measured aerosol properties for the rest of the air masses. With abundant precursor in the NCP, no matter where the air mass originates, as far as it stays in the NCP for a certain time, aerosol particles may get aged and mixed with newly emitted particles in a short time
- …