247,829 research outputs found
Strangeness Production in Chemically Non-Equilibrated Parton Plasma
Strangeness production was investigated during the equilibration of a gluon
dominated parton plasma produced at RHIC and LHC energies. The time evolution
of parton densities are followed by a set of rate equations in a 1-dimensional
expanding system. The strangeness production will depend on the initial
chemical equilibration level and in our case the parton densities will remain
far from the full equilibrium. We investigate the influence of gluon
fragmentation on final strangeness content.Comment: 12 pages (LaTeX) + 2 postscript figures (tarred, compressed,
uuencoded) included. Review to appear in Proceedings of Strangeness'95,
Tucson, Arizona, Jan. 4--6 1995. (American Institute of Physics
Optical spectroscopy study of Nd(O,F)BiS2 single crystals
We present an optical spectroscopy study on F-substituted NdOBiS
superconducting single crystals grown using KCl/LiCl flux method. The
measurement reveals a simple metallic response with a relatively low screened
plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV,
which is much smaller than the value expected from the first-principles
calculations for an electron doping level of x=0.5, but very close to the value
based on a doping level of 7 of itinerant electrons per Bi site as
determined by ARPES experiment. The energy scales of the interband transitions
are also well reproduced by the first-principles calculations. The results
suggest an absence of correlation effect in the compound, which essentially
rules out the exotic pairing mechanism for superconductivity or scenario based
on the strong electronic correlation effect. The study also reveals that the
system is far from a CDW instability as being widely discussed for a doping
level of x=0.5.Comment: 5 pages, 5 figure
Optical properties of TlNi2Se2: Observation of pseudogap formation
The quasi-two-dimensional nickel chalcogenides is a newly
discovered superconductor. We have performed optical spectroscopy study on
single crystals over a broad frequency range at various
temperatures. The overall optical reflectance spectra are similar to those
observed in its isostructure . Both the suppression in
and the peaklike feature in suggest the progressive
formation of a pseudogap feature in the midinfrared range with decreasing
temperatures, which might be originated from the dynamic local fluctuation of
charge-density-wave (CDW) instability. We propose that the CDW instability in
is driven by the saddle points mechanism, due to the existence of
van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure
Phase fluctuations versus Gaussian fluctuations in optimally-doped YBaCuO
We analyze recent torque measurements of the magnetization vs. magnetic
field in optimally doped YBaCuO (OPT YBCO) to argue against
a recent proposal by Rey et al that the magnetization results above are
consistent with Gaussian fluctuations. We find that, despite its strong
interlayer coupling, OPT YBCO displays an anomalous non-monotonic dependence of
on which represents direct evidence for the locking of the pair
wavefunction phase at and the subsequent unlocking by a
relatively weak . These unusual features characterize the unusual nature of
the transition to the Meissner state in cuprate superconductors. They are
absent in low- superconductors to our knowledge. We also stress the
importance of the vortex liquid state, as well as the profiles of the melting
field and the upper critical field curve in the -
plane. Contrary to the claims of Rey et al, we show that the curves of the
magnetization and the Nernst signal illustrate the inaccessibility of the
line near . The prediction of the line by Rey et al is
shown to be invalid in OPT YBCO.Comment: 6 pages, 6 figure
Optical spectroscopy study of the collapsed tetragonal phase of CaFe(AsP) single crystals
We present an optical spectroscopy study on P-doped CaFeAs which
experiences a structural phase transition from tetragonal to collapsed
tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of
low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4
eV) in optical conductivity across the transition, indicating an abrupt
reconstruction of band structure. The appearance of new feature is related to
the interband transition arising from the sinking of hole bands near
point below Fermi level in the cT phase, as expected from the density function
theory calculations in combination with the dynamical mean field theory.
However, the reduction of Drude spectral weight is at variance with those
calculations. The measurement also indicates an absence of the abnormal
spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase,
suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure
- …