508 research outputs found

    Analysis of structural properties of Petri nets based on product incidence matrix

    Get PDF
    summary:This paper presents some structural properties of a generalized Petri net (PN) with an algorithm to determine the (partial) conservativeness and (partial) consistency of the net. A product incidence matrix A=CCTA=CC^T or A~=CTC\tilde{A}=C^TC is defined and used to further improve the relations among PNs, linear inequalities and matrix analysis. Thus, based on Cramer's Rule, a new approach for the study of the solution of a linear system is given in terms of certain sub-determinants of the coefficient matrix and an efficient algorithm is proposed to compute these sub-determinants. The paper extends the common necessary and/or sufficient conditions for conservativeness and consistency in previous papers and some examples are designed to explain the conclusions finally

    Learning to Prove Theorems by Learning to Generate Theorems

    Full text link
    We consider the task of automated theorem proving, a key AI task. Deep learning has shown promise for training theorem provers, but there are limited human-written theorems and proofs available for supervised learning. To address this limitation, we propose to learn a neural generator that automatically synthesizes theorems and proofs for the purpose of training a theorem prover. Experiments on real-world tasks demonstrate that synthetic data from our approach improves the theorem prover and advances the state of the art of automated theorem proving in Metamath. Code is available at https://github.com/princeton-vl/MetaGen

    LINE: Large-scale Information Network Embedding

    Full text link
    This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the "LINE," which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online.Comment: WWW 201
    • …
    corecore