227 research outputs found
Sca-1+ Cardiac Stem Cells Mediate Acute Cardioprotection via Paracrine Factor SDF-1 following Myocardial Ischemia/Reperfusion
Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective factors. Here, we studied whether CSCs could initiate acute protection following global myocardial I/R via paracrine effect and what component from CSCs is critical to this protection.A murine model of global myocardial I/R was utilized to investigate paracrine effect of Sca-1+ CSCs on cardiac function. Intracoronary delivery of CSCs or CSC conditioned medium (CSC CM) prior to ischemia significantly improved myocardial function following I/R. siRNA targeting of VEGF in CSCs did not affect CSC-preserved myocardial function in response to I/R injury. However, differentiation of CSCs to cardiomyocytes (DCSCs) abolished this protection. Through direct comparison of the protein expression profiles of CSCs and DCSCs, SDF-1 was identified as one of the dominant paracrine factors secreted by CSCs. Blockade of the SDF-1 receptor by AMD3100 or downregulated SDF-1 expression in CSCs by specific SDF-1 siRNA dramatically impaired CSC-induced improvement in cardiac function and increased myocardial damage following I/R. Of note, CSC treatment increased myocardial STAT3 activation after I/R, whereas downregulation of SDF-1 action by blockade of the SDF-1 receptor or SDF-1 siRNA transfection abolished CSC-induced STAT3 activation. In addition, inhibition of STAT3 activation attenuated CSC-mediated cardioprotection following I/R. Finally, post-ischemic infusion of CSC CM was shown to significantly protect I/R-caused myocardial dysfunction.This study suggests that CSCs acutely improve post-ischemic myocardial function through paracrine factor SDF-1 and up-regulated myocardial STAT3 activation
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player Multi-Agent Learning Toolbox
With the breakthrough of AlphaGo, deep reinforcement learning becomes a
recognized technique for solving sequential decision-making problems. Despite
its reputation, data inefficiency caused by its trial and error learning
mechanism makes deep reinforcement learning hard to be practical in a wide
range of areas. Plenty of methods have been developed for sample efficient deep
reinforcement learning, such as environment modeling, experience transfer, and
distributed modifications, amongst which, distributed deep reinforcement
learning has shown its potential in various applications, such as
human-computer gaming, and intelligent transportation. In this paper, we
conclude the state of this exciting field, by comparing the classical
distributed deep reinforcement learning methods, and studying important
components to achieve efficient distributed learning, covering single player
single agent distributed deep reinforcement learning to the most complex
multiple players multiple agents distributed deep reinforcement learning.
Furthermore, we review recently released toolboxes that help to realize
distributed deep reinforcement learning without many modifications of their
non-distributed versions. By analyzing their strengths and weaknesses, a
multi-player multi-agent distributed deep reinforcement learning toolbox is
developed and released, which is further validated on Wargame, a complex
environment, showing usability of the proposed toolbox for multiple players and
multiple agents distributed deep reinforcement learning under complex games.
Finally, we try to point out challenges and future trends, hoping this brief
review can provide a guide or a spark for researchers who are interested in
distributed deep reinforcement learning.Comment: 14 pages, 17 figure
Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia
BACKGROUND:
Stem cell therapy is a promising treatment modality for injured cardiac tissue. A novel mechanism for this cardioprotection may include paracrine actions. Our lab has recently shown that gender differences exist in mesenchymal stem cell (MSC) paracrine function. Estrogen is implicated in the cardioprotection found in females. It remains unknown whether 17beta-estradiol (E2) affects MSC paracrine function and whether E2-treated MSCs may better protect injured cardiac tissue. We hypothesize that E2-exposed MSCs infused into hearts prior to ischemia may demonstrate increased vascular endothelial growth factor (VEGF) production and greater protection of myocardial function compared to untreated MSCs.
MATERIALS AND METHODS:
Untreated and E2-treated MSCs were isolated, cultured, and plated and supernatants were harvested for VEGF assay (enzyme-linked immunosorbent assay). Adult male Sprague-Dawley rat hearts (n = 13) were isolated and perfused via Langendorff model and subjected to 15 min equilibration, 25 min warm global ischemia, and 40 min reperfusion. Hearts were randomly assigned to perfusate vehicle, untreated male MSC, or E2-treated male MSC. Transcoronary delivery of 1 million MSCs was performed immediately prior to ischemia in experimental hearts.
RESULTS:
E2-treated MSCs provoked significantly more VEGF production than untreated MSCs (933.2 +/- 64.9 versus 595.8 +/- 10.7 pg/mL). Postischemic recovery of left ventricular developed pressure was significantly greater in hearts infused with E2-treated MSCs (66.9 +/- 3.3%) than untreated MSCs (48.7 +/- 3.7%) and vehicle (28.9 +/- 4.6%) at end reperfusion. There was also greater recovery of the end diastolic pressure with E2-treated MSCs than untreated MSCs and vehicle.
CONCLUSIONS:
Preischemic infusion of MSCs protects myocardial function and viability. E2-treated MSCs may enhance this paracrine protection, which suggests that ex vivo modification of MSCs may improve therapeutic outcome
Pathological Responses of Cardiac Mitochondria to Burn Trauma
Despite advances in treatment and care, burn trauma remains the fourth most common type of traumatic injury. Burn-induced cardiac failure is a key factor for patient mortality, especially during the initial post-burn period (the first 24 to 48 h). Mitochondria, among the most important subcellular organelles in cardiomyocytes, are a central player in determining the severity of myocardial damage. Defects in mitochondrial function and structure are involved in pathogenesis of numerous myocardial injuries and cardiovascular diseases. In this article, we comprehensively review the current findings on cardiac mitochondrial pathological changes and summarize burn-impaired mitochondrial respiration capacity and energy supply, induced mitochondrial oxidative stress, and increased cell death. The molecular mechanisms underlying these alterations are discussed, along with the possible influence of other biological variables. We hope this review will provide useful information to explore potential therapeutic approaches that target mitochondria for cardiac protection following burn injury
In-Vessel Co-Composting of Food Waste Employing Enriched Bacterial Consortium
Svrha je ovoga rada bila pripremiti odgovarajuću smjesu za kompostiranje s pomoću kulture bakterija i 2 % vapna za učinkovitu obradu otpada od hrane u posudi zapremnine 60 litara. U pokusu, koji je trajao 42 dana, otpaci su od hrane prvo pomiješani s piljevinom i 2 % (suhe tvari) vapna, zatim je u jedan reaktor dodana obogaćena kultura bakterija, dok se u drugom reaktoru nalazio kontrolni uzorak. Rezultati pokazuju da se inokuliranjem smjese za kompostiranje bakterijskom kulturom može uspješno riješiti problem zasićenosti uljem te poboljšati mineralizacija. Osim toga, parametri kao što su: emisija ugljičnog dioksida od (0,81±0,2) g/(kg·dan), indeks klijanja od (105±3) %, maseni udjel ekstraktibilnog amonijaka od 305,78 mg/kg, omjer ugljika i dušika od 16,18, pH=7,6 i električna vodljivost od 3,12 mS/cm potvrđuju zrelost komposta, koji je zadovoljio standarde kompostiranja. U kontrolnom je uzorku opaženo kašnjenje termofilne faze, pa kompost nije sazrio ni nakon 42 dana. Stoga je zaključeno da su dobro pripremljena smjesa za kompostiranje i bakterijska kultura s odgovarajućim svojstvima za razgradnju ulja nužni za uspješan sustav kompostiranja otpada od hrane.The aim of the present study is to develop a good initial composting mix using a bacterial consortium and 2 % lime for effective co-composting of food waste in a 60-litre in-vessel composter. In the experiment that lasted for 42 days, the food waste was first mixed with sawdust and 2 % lime (by dry mass), then one of the reactors was inoculated with an enriched bacterial consortium, while the other served as control. The results show that inoculation of the enriched natural bacterial consortium effectively overcame the oil-laden co-composting mass in the composter and increased the rate of mineralization. In addition, CO2 evolution rate of (0.81±0.2) g/(kg·day), seed germination index of (105±3) %, extractable ammonium mass fraction of 305.78 mg/kg, C/N ratio of 16.18, pH=7.6 and electrical conductivity of 3.12 mS/cm clearly indicate that the compost was well matured and met the composting standard requirements. In contrast, control treatment exhibited a delayed thermophilic phase and did not mature after 42 days, as evidenced by the maturity parameters. Therefore, a good composting mix and potential bacterial inoculum to degrade the oil are essential for food waste co-composting systems
Mesenchymal Stem Cell Secretions Improve Donor Heart Function 1 Following Ex-vivo Cold Storage
Objectives
Heart transplantation is the gold standard of treatments for end-stage heart failure, but its use is limited by extreme shortage of donor organs. The time “window” between procurement and transplantation sets the stage for myocardial ischemia/reperfusion injury, which constrains the maximal storage time and lowers use of donor organs. Given mesenchymal stem cell (MSC)-derived paracrine protection, we aimed to evaluate the efficacy of MSC-conditioned medium (CM) and extracellular vesicles (EVs) when added to ex vivo preservation solution on ameliorating ischemia/reperfusion–induced myocardial damage in donor hearts.
Methods
Mouse donor hearts were stored at 0°C-4°C of <1-hour cold ischemia (<1hr-I), 6hr-I + vehicle, 6hr-I + MSC-CM, 6hr-I + MSC-EVs, and 6hr-I + MSC-CM from MSCs treated with exosome release inhibitor. The hearts were then heterotopically implanted into recipient mice. At 24 hours postsurgery, myocardial function was evaluated. Heart tissue was collected for analysis of histology, apoptotic cell death, microRNA (miR)-199a-3p expression, and myocardial cytokine production.
Results
Six-hour cold ischemia significantly impaired myocardial function, increased cell death, and reduced miR-199a-3p in implanted hearts versus <1hr-I. MSC-CM or MSC-EVs in preservation solution reversed the detrimental effects of prolong cold ischemia on donor hearts. Exosome-depleted MSC-CM partially abolished MSC secretome-mediated cardioprotection in implanted hearts. MiR-199a-3p was highly enriched in MSC-EVs. MSC-CM and MSC-EVs increased cold ischemia–downregulated miR-199a-3p in donor hearts, whereas exosome-depletion neutralized this effect.
Conclusions
MSC-CM and MSC-EVs confer improved myocardial preservation in donor hearts during prolonged cold static storage and MSC-EVs can be used for intercellular transport of miRNAs in heart transplantation
Misuse of Statistical Methods in 10 Leading Chinese Medical Journals in 1998 and 2008
Statistical methods are vital to biomedical research. Our aim was to find out whether progress has been made in the last decade in the use of statistical methods in Chinese medical research. We reviewed 10 leading Chinese medical journals published in 1998 and in 2008. Regarding statistical methods, using a multiple t-test for multiple group comparison was the most common error in the t-test in both years, which significantly decreased in 2008. In contingency tables, no significant level adjustment for multiple comparison significantly decreased in 2008. In ANOVA, over a quarter of articles misused the method of multiple pair-wise comparison in both years, and no significant difference was seen between the two years. In the rank transformation nonparametric test, the error of using multiple pair-wise comparison for multiple group comparison became less common. Many mistakes were found in the randomised controlled trial (56.3% in 1998; 67.9% in 2008), non- randomised clinical trial (57.3%; 58.6%), basic science study (72.9%; 65.5%), case study or case series study (48.4%; 47.2%), and cross-sectional study (57.1%; 44.2%). Progress has been made in the use of statistical methods in Chinese medical journals, but much is yet to be done
Exogenous GDF11 Induces Cardiac and Skeletal Muscle Dysfunction and Wasting
Growth differentiation factor 11 (GDF11), a TGF-beta superfamily member, is highly homologous to myostatin and essential for embryonic patterning and organogenesis. Reports of GDF11 effects on adult tissues are conflicting, with some describing anti-aging and pro-regenerative activities on the heart and skeletal muscle while others opposite or no effects. Herein, we sought to determine the in vivo cardiac and skeletal muscle effects of excess GDF11. Mice were injected with GDF11 secreting cells, an identical model to that used to initially identify the in vivo effects of myostatin. GDF11 exposure in mice induced whole body wasting and profound loss of function in cardiac and skeletal muscle over a 14-day period. Loss of cardiac mass preceded skeletal muscle loss. Cardiac histologic and echocardiographic evaluation demonstrated loss of ventricular muscle wall thickness, decreased cardiomyocyte size, and decreased cardiac function 10 days following initiation of GDF11 exposure. Changes in skeletal muscle after GDF11 exposure were manifest at day 13 and were associated with wasting, decreased fiber size, and reduced strength. Changes in cardiomyocytes and skeletal muscle fibers were associated with activation of SMAD2, the ubiquitin–proteasome pathway and autophagy. Thus, GDF11 over administration in vivo results in cardiac and skeletal muscle loss, dysfunction, and death. Here, serum levels of GDF11 by Western blotting were 1.5-fold increased over controls. Although GDF11 effects in vivo are likely dose, route, and duration dependent, its physiologic changes are similar to myostatin and other Activin receptors ligands. These data support that GDF11, like its other closely related TGF-beta family members, induces loss of cardiac and skeletal muscle mass and function
- …