22,410 research outputs found

    Multiscale modelling of fluid and solute transport in soft tissues and microvessels

    Get PDF
    This study focuses on the movement of particles and extracellular fluid in soft tissues and microvessels. It analyzes modeling applications in biological and physiological fluids at a range of different length scales: from between a few tens to several hundred nanometers, on the endothelial glycocalyx and its effects on interactions between blood and the vessel wall; to a few micrometers, on movement of blood cells in capillaries and transcapillary exchange; to a few millimetres and centimetres, on extracellular matrix deformation and interstitial fluid movement in soft tissues. Interactions between blood cells and capillary wall are discussed when the sizes of the two are of the same order of magnitude, with the glycocalyx on the endothelial and red cell membranes being considered. Exchange of fluid, solutes, and gases by microvessels are highlighted when capillaries have counter-current arrangements. This anatomical feature exists in a number of tissues and is the key in the renal medulla on the urinary concentrating mechanism. The paper also addresses an important phenomenon on the transport of macromolecules. Concentration polarization of hyaluronan on the synovial lining of joint cavities is presented to demonstrate how the mechanism works in principle and how model predictions agree to experimental observations quantitatively

    Image classification by visual bag-of-words refinement and reduction

    Full text link
    This paper presents a new framework for visual bag-of-words (BOW) refinement and reduction to overcome the drawbacks associated with the visual BOW model which has been widely used for image classification. Although very influential in the literature, the traditional visual BOW model has two distinct drawbacks. Firstly, for efficiency purposes, the visual vocabulary is commonly constructed by directly clustering the low-level visual feature vectors extracted from local keypoints, without considering the high-level semantics of images. That is, the visual BOW model still suffers from the semantic gap, and thus may lead to significant performance degradation in more challenging tasks (e.g. social image classification). Secondly, typically thousands of visual words are generated to obtain better performance on a relatively large image dataset. Due to such large vocabulary size, the subsequent image classification may take sheer amount of time. To overcome the first drawback, we develop a graph-based method for visual BOW refinement by exploiting the tags (easy to access although noisy) of social images. More notably, for efficient image classification, we further reduce the refined visual BOW model to a much smaller size through semantic spectral clustering. Extensive experimental results show the promising performance of the proposed framework for visual BOW refinement and reduction

    The Bc→ψ(2S)πB_c\rightarrow \psi(2S)\pi, ηc(2S)π\eta_c(2S)\pi decays in the perturbative QCD approach

    Full text link
    Nonleptonic two body BcB_c decays including radially excited ψ(2S)\psi(2S) or ηc(2S)\eta_c(2S) mesons in the final state are studied using the perturbative QCD approach based on kTk_T factorization. The charmonium distribution amplitudes are extracted from the n=2,l=0n = 2, l = 0 Schro¨\ddot{o}dinger states for the harmonic oscillator potential. Utilizing these distribution amplitudes, we calculate the numerical results of the Bc→ψ(2S),ηc(2S)B_c\rightarrow \psi(2S),\eta_c(2S) transition form factors and branching fractions of Bc→ψ(2S)π,ηc(2S)πB_c\rightarrow \psi(2S)\pi, \eta_c(2S)\pi decays. The ratio between two decay modes Bc→ψ(2S)πB_c\rightarrow \psi(2S)\pi and Bc→J/ψπB_c\rightarrow J/\psi\pi is compatible with the experimental data within uncertainties, which indicate that the harmonic oscillator wave functions for ψ(2S)\psi(2S) and ηc(2S)\eta_c(2S) work well. It is found that the branching fraction of Bc→ηc(2S)πB_c\rightarrow \eta_c(2S)\pi, which is dominated by the twist-3 charmonium distribution amplitude, can reach the order of 10−310^{-3}. We hope it can be measured soon in the LHCb experiment.Comment: 9 pages, 3 figures,3 Table

    Two dimensional scaling of resistance in flux flow region in Tl2Ba2CaCu2O8Tl_2Ba_2CaCu_2O_8 thin films

    Full text link
    The resistance of Tl2Ba2CaCu2O8Tl_2Ba_2CaCu_2O_8 thin films has been measured when the angle between the applied fields and abab-plane of the film is changed continuously at various temperatures. Under various magnetic fields, the resistance can be well scaled in terms of the c-axis component of the applied fields at the same temperature in the whole angle range. Meanwhile, we show that the measurement of resistance in this way is a complementary method to determine the growth orientation of the anisotropic high-TcT_c superconductors.Comment: 11 pages, 8 figures. Have been published in Physica
    • …
    corecore