30,253 research outputs found

    Recovery of Sparse Signals Using Multiple Orthogonal Least Squares

    Full text link
    We study the problem of recovering sparse signals from compressed linear measurements. This problem, often referred to as sparse recovery or sparse reconstruction, has generated a great deal of interest in recent years. To recover the sparse signals, we propose a new method called multiple orthogonal least squares (MOLS), which extends the well-known orthogonal least squares (OLS) algorithm by allowing multiple LL indices to be chosen per iteration. Owing to inclusion of multiple support indices in each selection, the MOLS algorithm converges in much fewer iterations and improves the computational efficiency over the conventional OLS algorithm. Theoretical analysis shows that MOLS (L>1L > 1) performs exact recovery of all KK-sparse signals within KK iterations if the measurement matrix satisfies the restricted isometry property (RIP) with isometry constant Ξ΄LK<LK+2L.\delta_{LK} < \frac{\sqrt{L}}{\sqrt{K} + 2 \sqrt{L}}. The recovery performance of MOLS in the noisy scenario is also studied. It is shown that stable recovery of sparse signals can be achieved with the MOLS algorithm when the signal-to-noise ratio (SNR) scales linearly with the sparsity level of input signals

    Predicting the Quality of Short Narratives from Social Media

    Full text link
    An important and difficult challenge in building computational models for narratives is the automatic evaluation of narrative quality. Quality evaluation connects narrative understanding and generation as generation systems need to evaluate their own products. To circumvent difficulties in acquiring annotations, we employ upvotes in social media as an approximate measure for story quality. We collected 54,484 answers from a crowd-powered question-and-answer website, Quora, and then used active learning to build a classifier that labeled 28,320 answers as stories. To predict the number of upvotes without the use of social network features, we create neural networks that model textual regions and the interdependence among regions, which serve as strong benchmarks for future research. To our best knowledge, this is the first large-scale study for automatic evaluation of narrative quality.Comment: 7 pages, 2 figures. Accepted at the 2017 IJCAI conferenc
    • …
    corecore