30,253 research outputs found
Recovery of Sparse Signals Using Multiple Orthogonal Least Squares
We study the problem of recovering sparse signals from compressed linear
measurements. This problem, often referred to as sparse recovery or sparse
reconstruction, has generated a great deal of interest in recent years. To
recover the sparse signals, we propose a new method called multiple orthogonal
least squares (MOLS), which extends the well-known orthogonal least squares
(OLS) algorithm by allowing multiple indices to be chosen per iteration.
Owing to inclusion of multiple support indices in each selection, the MOLS
algorithm converges in much fewer iterations and improves the computational
efficiency over the conventional OLS algorithm. Theoretical analysis shows that
MOLS () performs exact recovery of all -sparse signals within
iterations if the measurement matrix satisfies the restricted isometry property
(RIP) with isometry constant The recovery performance of MOLS in the noisy scenario is also
studied. It is shown that stable recovery of sparse signals can be achieved
with the MOLS algorithm when the signal-to-noise ratio (SNR) scales linearly
with the sparsity level of input signals
Predicting the Quality of Short Narratives from Social Media
An important and difficult challenge in building computational models for
narratives is the automatic evaluation of narrative quality. Quality evaluation
connects narrative understanding and generation as generation systems need to
evaluate their own products. To circumvent difficulties in acquiring
annotations, we employ upvotes in social media as an approximate measure for
story quality. We collected 54,484 answers from a crowd-powered
question-and-answer website, Quora, and then used active learning to build a
classifier that labeled 28,320 answers as stories. To predict the number of
upvotes without the use of social network features, we create neural networks
that model textual regions and the interdependence among regions, which serve
as strong benchmarks for future research. To our best knowledge, this is the
first large-scale study for automatic evaluation of narrative quality.Comment: 7 pages, 2 figures. Accepted at the 2017 IJCAI conferenc
- β¦