322,177 research outputs found
New Primordial-Magnetic-Field Limit from The Latest LIGO S5 data
Since the energy momentum tensor of a magnetic field always contains a spin-2
component in its anisotropic stress, stochastic primordial magnetic field (PMF)
in the early universe must generate stochastic gravitational wave (GW)
background. This process will greatly affect the relic gravitational wave
(RGW), which is one of major scientific goals of the laser interferometer GW
detections. Recently, the fifth science (S5) run of laser interferometer
gravitational-wave observatory (LIGO) gave a latest upper limit
on the RGW background. Utilizing this upper
limit, we derive new PMF Limits: for a scale of galactic cluster
Mpc, the amplitude of PMF, that produced by the electroweak phase transition
(EPT), has to be weaker than Gauss; for a
scale of supercluster Mpc, the amplitude of PMF has to be weaker
than Gauss. In this manner, GW observation
has potential to make interesting contributions to the study of primordial
magnetic field.Comment: 17 pages, 3 figures, accepted for publication in PR
Polarized Curvature Radiation in Pulsar Magnetosphere
The propagation of polarized emission in pulsar magnetosphere is investigated
in this paper. The polarized waves are generated through curvature radiation
from the relativistic particles streaming along curved magnetic field lines and
co-rotating with the pulsar magnetosphere. Within the 1/{\deg} emission cone,
the waves can be divided into two natural wave mode components, the ordinary
(O) mode and the extraord nary (X) mode, with comparable intensities. Both
components propagate separately in magnetosphere, and are aligned within the
cone by adiabatic walking. The refraction of O-mode makes the two components
separated and incoherent. The detectable emission at a given height and a given
rotation phase consists of incoherent X-mode and O-mode components coming from
discrete emission regions. For four particle-density models in the form of
uniformity, cone, core and patches, we calculate the intensities for each mode
numerically within the entire pulsar beam. If the co-rotation of relativistic
particles with magnetosphere is not considered, the intensity distributions for
the X-mode and O-mode components are quite similar within the pulsar beam,
which causes serious depolarization. However, if the co-rotation of
relativistic particles is considered, the intensity distributions of the two
modes are very different, and the net polarization of out-coming emission
should be significant. Our numerical results are compared with observations,
and can naturally explain the orthogonal polarization modes of some pulsars.
Strong linear polarizations of some parts of pulsar profile can be reproduced
by curvature radiation and subsequent propagation effect.Comment: 12 pages, 9 figures, Accepted for publication in MNRA
Optical spectroscopy study of Nd(O,F)BiS2 single crystals
We present an optical spectroscopy study on F-substituted NdOBiS
superconducting single crystals grown using KCl/LiCl flux method. The
measurement reveals a simple metallic response with a relatively low screened
plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV,
which is much smaller than the value expected from the first-principles
calculations for an electron doping level of x=0.5, but very close to the value
based on a doping level of 7 of itinerant electrons per Bi site as
determined by ARPES experiment. The energy scales of the interband transitions
are also well reproduced by the first-principles calculations. The results
suggest an absence of correlation effect in the compound, which essentially
rules out the exotic pairing mechanism for superconductivity or scenario based
on the strong electronic correlation effect. The study also reveals that the
system is far from a CDW instability as being widely discussed for a doping
level of x=0.5.Comment: 5 pages, 5 figure
Optical properties of TlNi2Se2: Observation of pseudogap formation
The quasi-two-dimensional nickel chalcogenides is a newly
discovered superconductor. We have performed optical spectroscopy study on
single crystals over a broad frequency range at various
temperatures. The overall optical reflectance spectra are similar to those
observed in its isostructure . Both the suppression in
and the peaklike feature in suggest the progressive
formation of a pseudogap feature in the midinfrared range with decreasing
temperatures, which might be originated from the dynamic local fluctuation of
charge-density-wave (CDW) instability. We propose that the CDW instability in
is driven by the saddle points mechanism, due to the existence of
van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure
- …