2 research outputs found

    Toward Efficient Automated Feature Engineering

    Full text link
    Automated Feature Engineering (AFE) refers to automatically generate and select optimal feature sets for downstream tasks, which has achieved great success in real-world applications. Current AFE methods mainly focus on improving the effectiveness of the produced features, but ignoring the low-efficiency issue for large-scale deployment. Therefore, in this work, we propose a generic framework to improve the efficiency of AFE. Specifically, we construct the AFE pipeline based on reinforcement learning setting, where each feature is assigned an agent to perform feature transformation \com{and} selection, and the evaluation score of the produced features in downstream tasks serve as the reward to update the policy. We improve the efficiency of AFE in two perspectives. On the one hand, we develop a Feature Pre-Evaluation (FPE) Model to reduce the sample size and feature size that are two main factors on undermining the efficiency of feature evaluation. On the other hand, we devise a two-stage policy training strategy by running FPE on the pre-evaluation task as the initialization of the policy to avoid training policy from scratch. We conduct comprehensive experiments on 36 datasets in terms of both classification and regression tasks. The results show 2.9%2.9\% higher performance in average and 2x higher computational efficiency comparing to state-of-the-art AFE methods

    Sampling sparse representations with randomized measurement langevin dynamics

    No full text
    Stochastic Gradient Langevin Dynamics (SGLD) have been widely used for Bayesian sampling from certain probability distributions, incorporating derivatives of the log-posterior. With the derivative evaluation of the log-posterior distribution, SGLD methods generate samples from the distribution through performing as a thermostats dynamics that traverses over gradient flows of the log-posterior with certainly controllable perturbation. Even when the density is not known, existing solutions still can first learn the kernel density models from the given datasets, then produce new samples using the SGLD over the kernel density derivatives. In this work, instead of exploring new samples from kernel spaces, a novel SGLD sampler, namely, Randomized Measurement Langevin Dynamics (RMLD) is proposed to sample the high-dimensional sparse representations from the spectral domain of a given dataset.Specifically, given a random measurement matrix for sparse coding, RMLD first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the measurement matrix. The algorithm analysis shows that RMLD indeed projects a given dataset into a high-dimensional Gaussian distribution with Laplacian prior, then draw new sparse representation from the dataset through performing SGLD over the distribution. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of RMLD beyond baseline methods
    corecore