1,715 research outputs found
The G-O Rule and Waldmeier Effect in the Variations of the Numbers of Large and Small Sunspot Groups
We have analysed the combined Greenwich and Solar Optical Observing Network
(SOON) sunspot group data during the period of 1874-2011 and determined
variations in the annual numbers (counts) of the small, large and big sunspot
groups (these classifications are made on the basis of the maximum areas of the
sunspot groups). We found that the amplitude of an even-numbered cycle of the
number of large groups is smaller than that of its immediately following
odd-numbered cycle. This is consistent with the well known Gnevyshev and Ohl
rule or G-O rule of solar cycles, generally described by using the Zurich
sunspot number (Rz). During cycles 12-21 the G-O rule holds good for the
variation in the number of small groups also, but it is violated by cycle pair
(22, 23) as in the case of Rz. This behaviour of the variations in the small
groups is largely responsible for the anomalous behaviour of Rz in cycle pair
(22, 23). It is also found that the amplitude of an odd-numbered cycle of the
number of small groups is larger than that of its immediately following
even-numbered cycle. This can be called as `reverse G-O rule'. In the case of
the number of the big groups, both cycle pairs (12, 13) and (22, 23) violated
the G-O rule. In many cycles the positions of the peaks of the small, large,
and big groups are different and considerably differ with respect to the
corresponding positions of the Rz peaks. In the case of cycle 23, the
corresponding cycles of the small and large groups are largely symmetric/less
asymmetric (Waldmeier effect is weak/absent) with their maxima taking place two
years later than that of Rz. The corresponding cycle of the big groups is more
asymmetric (strong Waldmeier effect) with its maximum epoch taking place at the
same time as that of Rz.Comment: 13 pages, 5 figures, 1 table, accepted by Solar Physic
Theory of ac electrokinetic behavior of spheroidal cell suspensions with an intrinsic dispersion
The dielectric dispersion, dielectrophoretic (DEP) and electrorotational (ER)
spectra of spheroidal biological cell suspensions with an intrinsic dispersion
in the constituent dielectric constants are investigated. By means of the
spectral representation method, we express analytically the characteristic
frequencies and dispersion strengths both for the effective dielectric constant
and the Clausius-Mossotti factor (CMF). We identify four and six characteristic
frequencies for the effective dielectric spectra and CMF respectively, all of
them being dependent on the depolarization factor (or the cell shape). The
analytical results allow us to examine the effects of the cell shape, the
dispersion strength and the intrinsic frequency on the dielectric dispersion,
DEP and ER spectra. Furthermore, we include the local-field effects due to the
mutual interactions between cells in a dense suspension, and study the
dependence of co-field or anti-field dispersion peaks on the volume fractions.Comment: accepted by Phys. Rev.
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC
We investigate the cold nuclear matter(CNM) effects on dijet productions in
high-energy nuclear collisions at LHC with the next-to-leading order
perturbative QCD. The nuclear modifications for dijet angular distributions,
dijet invariant mass spectra, dijet transverse momentum spectra and dijet
momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS,
HKN and DS param-etrization sets of parton distributions in nucleus . It is
found that dijet angular distributions and dijet momentum imbalance are
insensitive to the initial-state CNM effects and thus provide optimal tools to
study the final-state hot QGP effects such as jet quenching. On the other hand,
the invariant mass spectra and the transverse momentum spectra of dijet are
generally enhanced in a wide region of the invariant mass or transverse
momentum due to CNM effects with a feature opposite to the expected suppression
because of the final-state parton energy loss effect in the QGP. The difference
of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution
functions is appreciable for dijet invariant mass spectra and transverse
momentum spectra at p+Pb collisions, and becomes more pronounced for those at
Pb+Pb reactions.Comment: 10 pages, 11 figure
Four Lessons in Versatility or How Query Languages Adapt to the Web
Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”
Physics Implications of Flat Directions in Free Fermionic Superstring Models II: Renormalization Group Analysis
We continue the investigation of the physics implications of a class of flat
directions for a prototype quasi-realistic free fermionic string model (CHL5),
building upon the results of the previous paper in which the complete mass
spectrum and effective trilinear couplings of the observable sector were
calculated to all orders in the superpotential. We introduce soft supersymmetry
breaking mass parameters into the model, and investigate the gauge symmetry
breaking patterns and the renormalization group analysis for two representative
flat directions, which leave an additional as well as the SM gauge
group unbroken at the string scale. We study symmetry breaking patterns that
lead to a phenomenologically acceptable hierarchy, and for electroweak and intermediate
scale symmetry breaking, respectively, and the associated mass
spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits
unrealistic features, including massless exotic fermions, but has an
interesting -quark hierarchy and associated CKM matrix in one case. There
are (some) non-canonical effective terms, which lead to a non-minimal
Higgs sector with more than two Higgs doublets involved in the symmetry
breaking, and a rich structure of Higgs particles, charginos, and neutralinos,
some of which, however, are massless or ultralight. In the electroweak scale
cases the scale of supersymmetry breaking is set by the mass, with the
sparticle masses in the several TeV range.Comment: 38 pages, 5 figures, LaTex. Minor correction
The chromatin reader ZMYND8 regulates Igh enhancers to promote immunoglobulin class switch recombination
Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector component of antibody responses. CSR is initiated by activation-induced cytidine deaminase (AID), which targets transcriptionally active immunoglobulin heavy chain (Igh) switch donor and acceptor DNA. The 3' Igh super-enhancer, 3' regulatory region (3'RR), is essential for acceptor region transcription, but how this function is regulated is unknown. Here, we identify the chromatin reader ZMYND8 as an essential regulator of the 3'RR. In B cells, ZMYND8 binds promoters and super-enhancers, including the Igh enhancers. ZMYND8 controls the 3'RR activity by modulating the enhancer transcriptional status. In its absence, there is increased 3'RR polymerase loading and decreased acceptor region transcription and CSR. In addition to CSR, ZMYND8 deficiency impairs somatic hypermutation (SHM) of Igh, which is also dependent on the 3'RR. Thus, ZMYND8 controls Igh diversification in mature B lymphocytes by regulating the activity of the 3' Igh super-enhancer
The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang
We propose a cosmological scenario in which the hot big bang universe is
produced by the collision of a brane in the bulk space with a bounding orbifold
plane, beginning from an otherwise cold, vacuous, static universe. The model
addresses the cosmological horizon, flatness and monopole problems and
generates a nearly scale-invariant spectrum of density perturbations without
invoking superluminal expansion (inflation). The scenario relies, instead, on
physical phenomena that arise naturally in theories based on extra dimensions
and branes. As an example, we present our scenario predominantly within the
context of heterotic M-theory. A prediction that distinguishes this scenario
from standard inflationary cosmology is a strongly blue gravitational wave
spectrum, which has consequences for microwave background polarization
experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
Achieving saturation in vertical organic transistors for organic light-emitting diode driving by nanorod channel geometric control
When conventional field-effect transistors with short channel length suffer from non-saturated output characteristics, this work proposed a vertical channel transistor to operate like a solid-state vacuum tube and exhibit good saturated curves. We utilized deep ultra-violet interference lithography to produce ordered grid-like metal to control the potential profile in vertical channel. We compared experimental and simulated characteristics to investigate the keys to achieve saturation. Finally, with an optimized design, a vertical organic transistor is used to drive a solution-processed white-light organic light-emitting diode to perform a luminescence control (0-260 cd/m(2)) with a 3.3-V base potential swing. (C) 2013 AIP Publishing LLC. [10.1063/1.4802999
- …