844 research outputs found

    An Efficient Speech Separation Network Based on Recurrent Fusion Dilated Convolution and Channel Attention

    Full text link
    We present an efficient speech separation neural network, ARFDCN, which combines dilated convolutions, multi-scale fusion (MSF), and channel attention to overcome the limited receptive field of convolution-based networks and the high computational cost of transformer-based networks. The suggested network architecture is encoder-decoder based. By using dilated convolutions with gradually increasing dilation value to learn local and global features and fusing them at adjacent stages, the model can learn rich feature content. Meanwhile, by adding channel attention modules to the network, the model can extract channel weights, learn more important features, and thus improve its expressive power and robustness. Experimental results indicate that the model achieves a decent balance between performance and computational efficiency, making it a promising alternative to current mainstream models for practical applications.Comment: Accepted by Interspeech 202

    Efficient Encoder-Decoder and Dual-Path Conformer for Comprehensive Feature Learning in Speech Enhancement

    Full text link
    Current speech enhancement (SE) research has largely neglected channel attention and spatial attention, and encoder-decoder architecture-based networks have not adequately considered how to provide efficient inputs to the intermediate enhancement layer. To address these issues, this paper proposes a time-frequency (T-F) domain SE network (DPCFCS-Net) that incorporates improved densely connected blocks, dual-path modules, convolution-augmented transformers (conformers), channel attention, and spatial attention. Compared with previous models, our proposed model has a more efficient encoder-decoder and can learn comprehensive features. Experimental results on the VCTK+DEMAND dataset demonstrate that our method outperforms existing techniques in SE performance. Furthermore, the improved densely connected block and two dimensions attention module developed in this work are highly adaptable and easily integrated into existing networks.Comment: Accepted at Interspeech202
    • …
    corecore