36,979 research outputs found
Ensemble in Residence: Muir String Quartet, January 29, 2014
This is the concert program of the Ensemble in Residence: Muir String Quartet performance on Wednesday, January 29, 2014 at 8:00 p.m., at the Tsai Performance Center, 685 Commonwealth Avenue, Boston, Massachusetts. Works performed were String Quartet No. 3 in C major "The Bird" by Joseph Haydn, String Quartet in A minor by Fritz Kreisler, and String Quartet by Maurice Ravel. Digitization for Boston University Concert Programs was supported by the Boston University Humanities Library Endowed Fund
Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos
In this work, we propose an approach to the spatiotemporal localisation
(detection) and classification of multiple concurrent actions within temporally
untrimmed videos. Our framework is composed of three stages. In stage 1,
appearance and motion detection networks are employed to localise and score
actions from colour images and optical flow. In stage 2, the appearance network
detections are boosted by combining them with the motion detection scores, in
proportion to their respective spatial overlap. In stage 3, sequences of
detection boxes most likely to be associated with a single action instance,
called action tubes, are constructed by solving two energy maximisation
problems via dynamic programming. While in the first pass, action paths
spanning the whole video are built by linking detection boxes over time using
their class-specific scores and their spatial overlap, in the second pass,
temporal trimming is performed by ensuring label consistency for all
constituting detection boxes. We demonstrate the performance of our algorithm
on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new
state-of-the-art results across the board and significantly increasing
detection speed at test time. We achieve a huge leap forward in action
detection performance and report a 20% and 11% gain in mAP (mean average
precision) on UCF-101 and J-HMDB-21 datasets respectively when compared to the
state-of-the-art.Comment: Accepted by British Machine Vision Conference 201
Cascaded Boundary Regression for Temporal Action Detection
Temporal action detection in long videos is an important problem.
State-of-the-art methods address this problem by applying action classifiers on
sliding windows. Although sliding windows may contain an identifiable portion
of the actions, they may not necessarily cover the entire action instance,
which would lead to inferior performance. We adapt a two-stage temporal action
detection pipeline with Cascaded Boundary Regression (CBR) model.
Class-agnostic proposals and specific actions are detected respectively in the
first and the second stage. CBR uses temporal coordinate regression to refine
the temporal boundaries of the sliding windows. The salient aspect of the
refinement process is that, inside each stage, the temporal boundaries are
adjusted in a cascaded way by feeding the refined windows back to the system
for further boundary refinement. We test CBR on THUMOS-14 and TVSeries, and
achieve state-of-the-art performance on both datasets. The performance gain is
especially remarkable under high IoU thresholds, e.g. map@tIoU=0.5 on THUMOS-14
is improved from 19.0% to 31.0%
Smart Asset Management for Electric Utilities: Big Data and Future
This paper discusses about future challenges in terms of big data and new
technologies. Utilities have been collecting data in large amounts but they are
hardly utilized because they are huge in amount and also there is uncertainty
associated with it. Condition monitoring of assets collects large amounts of
data during daily operations. The question arises "How to extract information
from large chunk of data?" The concept of "rich data and poor information" is
being challenged by big data analytics with advent of machine learning
techniques. Along with technological advancements like Internet of Things
(IoT), big data analytics will play an important role for electric utilities.
In this paper, challenges are answered by pathways and guidelines to make the
current asset management practices smarter for the future.Comment: 13 pages, 3 figures, Proceedings of 12th World Congress on
Engineering Asset Management (WCEAM) 201
- …