36,979 research outputs found

    Ensemble in Residence: Muir String Quartet, January 29, 2014

    Full text link
    This is the concert program of the Ensemble in Residence: Muir String Quartet performance on Wednesday, January 29, 2014 at 8:00 p.m., at the Tsai Performance Center, 685 Commonwealth Avenue, Boston, Massachusetts. Works performed were String Quartet No. 3 in C major "The Bird" by Joseph Haydn, String Quartet in A minor by Fritz Kreisler, and String Quartet by Maurice Ravel. Digitization for Boston University Concert Programs was supported by the Boston University Humanities Library Endowed Fund

    Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

    Get PDF
    In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are boosted by combining them with the motion detection scores, in proportion to their respective spatial overlap. In stage 3, sequences of detection boxes most likely to be associated with a single action instance, called action tubes, are constructed by solving two energy maximisation problems via dynamic programming. While in the first pass, action paths spanning the whole video are built by linking detection boxes over time using their class-specific scores and their spatial overlap, in the second pass, temporal trimming is performed by ensuring label consistency for all constituting detection boxes. We demonstrate the performance of our algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new state-of-the-art results across the board and significantly increasing detection speed at test time. We achieve a huge leap forward in action detection performance and report a 20% and 11% gain in mAP (mean average precision) on UCF-101 and J-HMDB-21 datasets respectively when compared to the state-of-the-art.Comment: Accepted by British Machine Vision Conference 201

    Cascaded Boundary Regression for Temporal Action Detection

    Full text link
    Temporal action detection in long videos is an important problem. State-of-the-art methods address this problem by applying action classifiers on sliding windows. Although sliding windows may contain an identifiable portion of the actions, they may not necessarily cover the entire action instance, which would lead to inferior performance. We adapt a two-stage temporal action detection pipeline with Cascaded Boundary Regression (CBR) model. Class-agnostic proposals and specific actions are detected respectively in the first and the second stage. CBR uses temporal coordinate regression to refine the temporal boundaries of the sliding windows. The salient aspect of the refinement process is that, inside each stage, the temporal boundaries are adjusted in a cascaded way by feeding the refined windows back to the system for further boundary refinement. We test CBR on THUMOS-14 and TVSeries, and achieve state-of-the-art performance on both datasets. The performance gain is especially remarkable under high IoU thresholds, e.g. map@tIoU=0.5 on THUMOS-14 is improved from 19.0% to 31.0%

    Smart Asset Management for Electric Utilities: Big Data and Future

    Full text link
    This paper discusses about future challenges in terms of big data and new technologies. Utilities have been collecting data in large amounts but they are hardly utilized because they are huge in amount and also there is uncertainty associated with it. Condition monitoring of assets collects large amounts of data during daily operations. The question arises "How to extract information from large chunk of data?" The concept of "rich data and poor information" is being challenged by big data analytics with advent of machine learning techniques. Along with technological advancements like Internet of Things (IoT), big data analytics will play an important role for electric utilities. In this paper, challenges are answered by pathways and guidelines to make the current asset management practices smarter for the future.Comment: 13 pages, 3 figures, Proceedings of 12th World Congress on Engineering Asset Management (WCEAM) 201
    • …
    corecore