5,221 research outputs found

    Semi-Supervised Sparse Coding

    Full text link
    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets

    The Effect of Foreign Direct Investment on International Migration: Does Education Matter?

    Get PDF
    Using migration data in 1990 and 2000, we find that inward foreign direct investment (FDI) in non-OECD countries affects the out-migration of individuals with tertiary and secondary education to OECD countries originating the investments, but has no significant effect on the out-migration of individuals with primary education. Distinguishing between linkage and home effects, our results show a dominant home effect of FDI for individuals with tertiary education, but a stronger linkage effect for those with secondary education. The existing stock of former migrants in foreign countries influences the out-migration of individuals with primary education

    Large Margin Image Set Representation and Classification

    Full text link
    In this paper, we propose a novel image set representation and classification method by maximizing the margin of image sets. The margin of an image set is defined as the difference of the distance to its nearest image set from different classes and the distance to its nearest image set of the same class. By modeling the image sets by using both their image samples and their affine hull models, and maximizing the margins of the images sets, the image set representation parameter learning problem is formulated as an minimization problem, which is further optimized by an expectation -maximization (EM) strategy with accelerated proximal gradient (APG) optimization in an iterative algorithm. To classify a given test image set, we assign it to the class which could provide the largest margin. Experiments on two applications of video-sequence-based face recognition demonstrate that the proposed method significantly outperforms state-of-the-art image set classification methods in terms of both effectiveness and efficiency

    International Comovement of Economic Fluctuations: A Spatial Analysis

    Get PDF
    We consider the comovement of economic volatility across multiple countries. Using spatial models with data from 187 countries over the period of 1960–2007, we find a strong spatial comovement of economic volatility. More interestingly, the effect of geographical proximity on economic volatility comovement is strongest during the period of international shocks (1973–86), but almost disappears over the globalization era (1987–2007). By way of contrast, the influence of trade relations in determining the comovement of economic volatility is significant over 1987–2007

    Supervised cross-modal factor analysis for multiple modal data classification

    Full text link
    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods
    • …
    corecore